Cargando…

Coherent theta activity in the medial and orbital frontal cortices encodes reward value

This study examined how the medial frontal (MFC) and orbital frontal (OFC) cortices process reward information. We simultaneously recorded local field potentials in the two areas as rats consumed liquid sucrose rewards. Both areas exhibited a 4–8 Hz ‘theta’ rhythm that was phase-locked to the lick c...

Descripción completa

Detalles Bibliográficos
Autores principales: Amarante, Linda M, Laubach, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457826/
https://www.ncbi.nlm.nih.gov/pubmed/34505830
http://dx.doi.org/10.7554/eLife.63372
Descripción
Sumario:This study examined how the medial frontal (MFC) and orbital frontal (OFC) cortices process reward information. We simultaneously recorded local field potentials in the two areas as rats consumed liquid sucrose rewards. Both areas exhibited a 4–8 Hz ‘theta’ rhythm that was phase-locked to the lick cycle. The rhythm tracked shifts in sucrose concentrations and fluid volumes, demonstrating that it is sensitive to differences in reward magnitude. The coupling between the rhythm and licking was stronger in MFC than OFC and varied with response vigor and absolute reward value in the MFC. Spectral analysis revealed zero-lag coherence between the cortical areas, and found evidence for a directionality of the rhythm, with MFC leading OFC. Our findings suggest that consummatory behavior generates simultaneous theta range activity in the MFC and OFC that encodes the value of consumed fluids, with the MFC having a top-down role in the control of consumption.