Cargando…

Integrating 31-Gene Expression Profiling With Clinicopathologic Features to Optimize Cutaneous Melanoma Sentinel Lymph Node Metastasis Prediction

National guidelines recommend sentinel lymph node biopsy (SLNB) be offered to patients with > 10% likelihood of sentinel lymph node (SLN) positivity. On the other hand, guidelines do not recommend SLNB for patients with T1a tumors without high-risk features who have < 5% likelihood of a positi...

Descripción completa

Detalles Bibliográficos
Autores principales: Whitman, Eric D., Koshenkov, Vadim P., Gastman, Brian R., Lewis, Deri, Hsueh, Eddy C., Pak, Ho, Trezona, Thomas P., Davidson, Robert S., McPhee, Michael, Guenther, J. Michael, Toomey, Paul, Smith, Franz O., Beitsch, Peter D., Lewis, James M., Ward, Andrew, Young, Shawn E., Shah, Parth K., Quick, Ann P., Martin, Brian J., Zolochevska, Olga, Covington, Kyle R., Monzon, Federico A., Goldberg, Matthew S., Cook, Robert W., Fleming, Martin D., Hyams, David M., Vetto, John T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457832/
https://www.ncbi.nlm.nih.gov/pubmed/34568719
http://dx.doi.org/10.1200/PO.21.00162
_version_ 1784571187315081216
author Whitman, Eric D.
Koshenkov, Vadim P.
Gastman, Brian R.
Lewis, Deri
Hsueh, Eddy C.
Pak, Ho
Trezona, Thomas P.
Davidson, Robert S.
McPhee, Michael
Guenther, J. Michael
Toomey, Paul
Smith, Franz O.
Beitsch, Peter D.
Lewis, James M.
Ward, Andrew
Young, Shawn E.
Shah, Parth K.
Quick, Ann P.
Martin, Brian J.
Zolochevska, Olga
Covington, Kyle R.
Monzon, Federico A.
Goldberg, Matthew S.
Cook, Robert W.
Fleming, Martin D.
Hyams, David M.
Vetto, John T.
author_facet Whitman, Eric D.
Koshenkov, Vadim P.
Gastman, Brian R.
Lewis, Deri
Hsueh, Eddy C.
Pak, Ho
Trezona, Thomas P.
Davidson, Robert S.
McPhee, Michael
Guenther, J. Michael
Toomey, Paul
Smith, Franz O.
Beitsch, Peter D.
Lewis, James M.
Ward, Andrew
Young, Shawn E.
Shah, Parth K.
Quick, Ann P.
Martin, Brian J.
Zolochevska, Olga
Covington, Kyle R.
Monzon, Federico A.
Goldberg, Matthew S.
Cook, Robert W.
Fleming, Martin D.
Hyams, David M.
Vetto, John T.
author_sort Whitman, Eric D.
collection PubMed
description National guidelines recommend sentinel lymph node biopsy (SLNB) be offered to patients with > 10% likelihood of sentinel lymph node (SLN) positivity. On the other hand, guidelines do not recommend SLNB for patients with T1a tumors without high-risk features who have < 5% likelihood of a positive SLN. However, the decision to perform SLNB is less certain for patients with higher-risk T1 melanomas in which a positive node is expected 5%-10% of the time. We hypothesized that integrating clinicopathologic features with the 31-gene expression profile (31-GEP) score using advanced artificial intelligence techniques would provide more precise SLN risk prediction. METHODS: An integrated 31-GEP (i31-GEP) neural network algorithm incorporating clinicopathologic features with the continuous 31-GEP score was developed using a previously reported patient cohort (n = 1,398) and validated using an independent cohort (n = 1,674). RESULTS: Compared with other covariates in the i31-GEP, the continuous 31-GEP score had the largest likelihood ratio (G(2) = 91.3, P < .001) for predicting SLN positivity. The i31-GEP demonstrated high concordance between predicted and observed SLN positivity rates (linear regression slope = 0.999). The i31-GEP increased the percentage of patients with T1-T4 tumors predicted to have < 5% SLN-positive likelihood from 8.5% to 27.7% with a negative predictive value of 98%. Importantly, for patients with T1 tumors originally classified with a likelihood of SLN positivity of 5%-10%, the i31-GEP reclassified 63% of cases as having < 5% or > 10% likelihood of positive SLN, for a more precise, personalized, and clinically actionable SLN-positive likelihood estimate. CONCLUSION: These data suggest the i31-GEP could reduce the number of SLNBs performed by identifying patients with likelihood under the 5% threshold for performance of SLNB and improve the yield of positive SLNBs by identifying patients more likely to have a positive SLNB.
format Online
Article
Text
id pubmed-8457832
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Wolters Kluwer Health
record_format MEDLINE/PubMed
spelling pubmed-84578322021-09-23 Integrating 31-Gene Expression Profiling With Clinicopathologic Features to Optimize Cutaneous Melanoma Sentinel Lymph Node Metastasis Prediction Whitman, Eric D. Koshenkov, Vadim P. Gastman, Brian R. Lewis, Deri Hsueh, Eddy C. Pak, Ho Trezona, Thomas P. Davidson, Robert S. McPhee, Michael Guenther, J. Michael Toomey, Paul Smith, Franz O. Beitsch, Peter D. Lewis, James M. Ward, Andrew Young, Shawn E. Shah, Parth K. Quick, Ann P. Martin, Brian J. Zolochevska, Olga Covington, Kyle R. Monzon, Federico A. Goldberg, Matthew S. Cook, Robert W. Fleming, Martin D. Hyams, David M. Vetto, John T. JCO Precis Oncol ORIGINAL REPORTS National guidelines recommend sentinel lymph node biopsy (SLNB) be offered to patients with > 10% likelihood of sentinel lymph node (SLN) positivity. On the other hand, guidelines do not recommend SLNB for patients with T1a tumors without high-risk features who have < 5% likelihood of a positive SLN. However, the decision to perform SLNB is less certain for patients with higher-risk T1 melanomas in which a positive node is expected 5%-10% of the time. We hypothesized that integrating clinicopathologic features with the 31-gene expression profile (31-GEP) score using advanced artificial intelligence techniques would provide more precise SLN risk prediction. METHODS: An integrated 31-GEP (i31-GEP) neural network algorithm incorporating clinicopathologic features with the continuous 31-GEP score was developed using a previously reported patient cohort (n = 1,398) and validated using an independent cohort (n = 1,674). RESULTS: Compared with other covariates in the i31-GEP, the continuous 31-GEP score had the largest likelihood ratio (G(2) = 91.3, P < .001) for predicting SLN positivity. The i31-GEP demonstrated high concordance between predicted and observed SLN positivity rates (linear regression slope = 0.999). The i31-GEP increased the percentage of patients with T1-T4 tumors predicted to have < 5% SLN-positive likelihood from 8.5% to 27.7% with a negative predictive value of 98%. Importantly, for patients with T1 tumors originally classified with a likelihood of SLN positivity of 5%-10%, the i31-GEP reclassified 63% of cases as having < 5% or > 10% likelihood of positive SLN, for a more precise, personalized, and clinically actionable SLN-positive likelihood estimate. CONCLUSION: These data suggest the i31-GEP could reduce the number of SLNBs performed by identifying patients with likelihood under the 5% threshold for performance of SLNB and improve the yield of positive SLNBs by identifying patients more likely to have a positive SLNB. Wolters Kluwer Health 2021-09-13 /pmc/articles/PMC8457832/ /pubmed/34568719 http://dx.doi.org/10.1200/PO.21.00162 Text en © 2021 by American Society of Clinical Oncology https://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution Non-Commercial No Derivatives 4.0 License: https://creativecommons.org/licenses/by-nc-nd/4.0/
spellingShingle ORIGINAL REPORTS
Whitman, Eric D.
Koshenkov, Vadim P.
Gastman, Brian R.
Lewis, Deri
Hsueh, Eddy C.
Pak, Ho
Trezona, Thomas P.
Davidson, Robert S.
McPhee, Michael
Guenther, J. Michael
Toomey, Paul
Smith, Franz O.
Beitsch, Peter D.
Lewis, James M.
Ward, Andrew
Young, Shawn E.
Shah, Parth K.
Quick, Ann P.
Martin, Brian J.
Zolochevska, Olga
Covington, Kyle R.
Monzon, Federico A.
Goldberg, Matthew S.
Cook, Robert W.
Fleming, Martin D.
Hyams, David M.
Vetto, John T.
Integrating 31-Gene Expression Profiling With Clinicopathologic Features to Optimize Cutaneous Melanoma Sentinel Lymph Node Metastasis Prediction
title Integrating 31-Gene Expression Profiling With Clinicopathologic Features to Optimize Cutaneous Melanoma Sentinel Lymph Node Metastasis Prediction
title_full Integrating 31-Gene Expression Profiling With Clinicopathologic Features to Optimize Cutaneous Melanoma Sentinel Lymph Node Metastasis Prediction
title_fullStr Integrating 31-Gene Expression Profiling With Clinicopathologic Features to Optimize Cutaneous Melanoma Sentinel Lymph Node Metastasis Prediction
title_full_unstemmed Integrating 31-Gene Expression Profiling With Clinicopathologic Features to Optimize Cutaneous Melanoma Sentinel Lymph Node Metastasis Prediction
title_short Integrating 31-Gene Expression Profiling With Clinicopathologic Features to Optimize Cutaneous Melanoma Sentinel Lymph Node Metastasis Prediction
title_sort integrating 31-gene expression profiling with clinicopathologic features to optimize cutaneous melanoma sentinel lymph node metastasis prediction
topic ORIGINAL REPORTS
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457832/
https://www.ncbi.nlm.nih.gov/pubmed/34568719
http://dx.doi.org/10.1200/PO.21.00162
work_keys_str_mv AT whitmanericd integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT koshenkovvadimp integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT gastmanbrianr integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT lewisderi integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT hsueheddyc integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT pakho integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT trezonathomasp integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT davidsonroberts integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT mcpheemichael integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT guentherjmichael integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT toomeypaul integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT smithfranzo integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT beitschpeterd integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT lewisjamesm integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT wardandrew integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT youngshawne integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT shahparthk integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT quickannp integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT martinbrianj integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT zolochevskaolga integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT covingtonkyler integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT monzonfedericoa integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT goldbergmatthews integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT cookrobertw integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT flemingmartind integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT hyamsdavidm integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction
AT vettojohnt integrating31geneexpressionprofilingwithclinicopathologicfeaturestooptimizecutaneousmelanomasentinellymphnodemetastasisprediction