Cargando…
MRI-Only Radiotherapy Planning for Nasopharyngeal Carcinoma Using Deep Learning
BACKGROUND: Radical radiotherapy is the main treatment modality for early and locally advanced nasopharyngeal carcinoma (NPC). Magnetic resonance imaging (MRI) has the advantages of no ionizing radiation and high soft-tissue resolution compared to computed tomography (CT), but it does not provide el...
Autores principales: | Ma, Xiangyu, Chen, Xinyuan, Li, Jingwen, Wang, Yu, Men, Kuo, Dai, Jianrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457879/ https://www.ncbi.nlm.nih.gov/pubmed/34568044 http://dx.doi.org/10.3389/fonc.2021.713617 |
Ejemplares similares
-
Combining distance and anatomical information for deep-learning based dose distribution predictions for nasopharyngeal cancer radiotherapy planning
por: Chen, Xinyuan, et al.
Publicado: (2023) -
Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images
por: Men, Kuo, et al.
Publicado: (2017) -
Evaluation of Automatic Segmentation Model With Dosimetric Metrics for Radiotherapy of Esophageal Cancer
por: Zhu, Ji, et al.
Publicado: (2020) -
A feasibility study on an automated method to generate patient‐specific dose distributions for radiotherapy using deep learning
por: Chen, Xinyuan, et al.
Publicado: (2018) -
CNN-Based Quality Assurance for Automatic Segmentation of Breast Cancer in Radiotherapy
por: Chen, Xinyuan, et al.
Publicado: (2020)