Cargando…

UPLC-MS/MS-Based Rat Serum Metabolomics Reveals the Detoxification Mechanism of Psoraleae Fructus during Salt Processing

Psoraleae Fructus (PF) is a botanical medicine widely used in Asian countries, of which salt products have higher safety and efficacy. However, the biological mechanism of the detoxification of salt-processing Psoraleae Fructus (SPF) has not yet been revealed. In this study, UPLC-MS/MS technology wa...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dan, Li, Na, Li, Shengrong, Chen, Yilong, He, Leilei, Zhang, Xiaomei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457953/
https://www.ncbi.nlm.nih.gov/pubmed/34567215
http://dx.doi.org/10.1155/2021/5597233
Descripción
Sumario:Psoraleae Fructus (PF) is a botanical medicine widely used in Asian countries, of which salt products have higher safety and efficacy. However, the biological mechanism of the detoxification of salt-processing Psoraleae Fructus (SPF) has not yet been revealed. In this study, UPLC-MS/MS technology was used to explore the metabolic differences between SPF and PF in normal rats and reveal the mechanism of salt processing. The histopathological results of rat liver and kidney showed that the degree of liver and kidney injure in the SPF group was less than that in the PF group. The results of metabolomics showed that the detoxification mechanism of PF by salt processing might be related to glycerophospholipid metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, arginine and proline metabolism, phenylalanine metabolism, and linoleic acid metabolism. PF-induced inflammation could be reduced by regulating the expression of metabolites to achieve the purpose of salt processing and detoxification. It included reducing the production of metabolites such as 1-acyl-sn-glycero-3-phosphocholine, sn-glycero-3-phosphocholine, tyrosine, arginine, linoleic acid, arachidonic acid, and phenylacetylglycine/hippuric acid ratio and upregulating the expression of metabolites such as creatine.