Cargando…
Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images
Advances in microscopy have increased output data volumes, and powerful image analysis methods are required to match. In particular, finding and characterizing nuclei from microscopy images, a core cytometry task, remains difficult to automate. While deep learning models have given encouraging resul...
Autores principales: | Ali, Mohammed A. S., Misko, Oleg, Salumaa, Sten-Oliver, Papkov, Mikhail, Palo, Kaupo, Fishman, Dmytro, Parts, Leopold |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458686/ https://www.ncbi.nlm.nih.gov/pubmed/34167359 http://dx.doi.org/10.1177/24725552211023214 |
Ejemplares similares
-
ArtSeg—Artifact segmentation and removal in brightfield cell microscopy images without manual pixel-level annotations
por: Ali, Mohammed A. S., et al.
Publicado: (2022) -
Segmentation of Total Cell Area in Brightfield Microscopy Images
por: Čepa, Martin
Publicado: (2018) -
Subcellular Microanatomy by 3D Deconvolution Brightfield Microscopy: Method and Analysis Using Human Chromatin in the Interphase Nucleus
por: Tadrous, Paul Joseph
Publicado: (2012) -
Utility of fluorescence imitating brightfield imaging microscopy for
the diagnosis of feline chronic enteropathy
por: Au Yeung, Sarah, et al.
Publicado: (2022) -
Identification of sieve elements and companion cell protoplasts by a combination of brightfield and fluorescence microscopy
por: Kaur, Prabhjot, et al.
Publicado: (2018)