Cargando…
Toward Predicting Human Performance Outcomes From Wearable Technologies: A Computational Modeling Approach
Wearable technologies for measuring digital and chemical physiology are pervading the consumer market and hold potential to reliably classify states of relevance to human performance including stress, sleep deprivation, and physical exertion. The ability to efficiently and accurately classify physio...
Autores principales: | Brunyé, Tad T., Yau, Kenny, Okano, Kana, Elliott, Grace, Olenich, Sara, Giles, Grace E., Navarro, Ester, Elkin-Frankston, Seth, Young, Alexander L., Miller, Eric L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458818/ https://www.ncbi.nlm.nih.gov/pubmed/34566701 http://dx.doi.org/10.3389/fphys.2021.738973 |
Ejemplares similares
-
When Anger Motivates: Approach States Selectively Influence Running Performance
por: Giles, Grace E., et al.
Publicado: (2020) -
Editorial: Wearable Technology for Human Performance
por: Drummond, Colin K., et al.
Publicado: (2022) -
Caffeine Promotes Global Spatial Processing in Habitual and Non-Habitual Caffeine Consumers
por: Giles, Grace E., et al.
Publicado: (2013) -
Stress Effects on Mood, HPA Axis, and Autonomic Response: Comparison of Three Psychosocial Stress Paradigms
por: Giles, Grace E., et al.
Publicado: (2014) -
Transcranial direct current stimulation (tDCS) to dorsolateral prefrontal cortex influences perceived pleasantness of food
por: Anderson, Eric C., et al.
Publicado: (2023)