Cargando…
A Modeling and Machine Learning Pipeline to Rationally Design Treatments to Restore Neuroendocrine Disorders in Heterogeneous Individuals
Heterogeneity among individual patients presents a fundamental challenge to effective treatment, since a treatment protocol working for a portion of the population often fails in others. We hypothesize that a computational pipeline integrating mathematical modeling and machine learning could be used...
Autor principal: | Zhang, Tongli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458900/ https://www.ncbi.nlm.nih.gov/pubmed/34567056 http://dx.doi.org/10.3389/fgene.2021.656508 |
Ejemplares similares
-
Editorial: Machine learning for peptide structure, function, and design
por: Ge, Ruiquan, et al.
Publicado: (2022) -
The use of semantic similarity measures for optimally integrating heterogeneous Gene Ontology data from large scale annotation pipelines
por: Mazandu, Gaston K., et al.
Publicado: (2014) -
Designing combination therapies with modeling chaperoned machine learning
por: Zhang, Yin, et al.
Publicado: (2019) -
Pipeliner: A Nextflow-Based Framework for the Definition of Sequencing Data Processing Pipelines
por: Federico, Anthony, et al.
Publicado: (2019) -
Rational design of the genetic code expansion toolkit for in vivo encoding of D-amino acids
por: Jiang, Han-Kai, et al.
Publicado: (2023)