Cargando…
Visual Explanation for Identification of the Brain Bases for Developmental Dyslexia on fMRI Data
Problem: Brain imaging studies of mental health and neurodevelopmental disorders have recently included machine learning approaches to identify patients based solely on their brain activation. The goal is to identify brain-related features that generalize from smaller samples of data to larger ones;...
Autores principales: | Tomaz Da Silva, Laura, Esper, Nathalia Bianchini, Ruiz, Duncan D., Meneguzzi, Felipe, Buchweitz, Augusto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458961/ https://www.ncbi.nlm.nih.gov/pubmed/34566613 http://dx.doi.org/10.3389/fncom.2021.594659 |
Ejemplares similares
-
Predicting Brain Age at Slice Level: Convolutional Neural Networks and Consequences for Interpretability
por: Ballester, Pedro L., et al.
Publicado: (2021) -
An fMRI study of inhibitory control and the effects of exposure to violence in Latin-American early adolescents: alterations in frontoparietal activation and performance
por: Cará, Valentina Metsavaht, et al.
Publicado: (2019) -
An fMRI study of finger movements in children with and without dyslexia
por: Turesky, Ted K., et al.
Publicado: (2023) -
Impaired auditory sampling in dyslexia: further evidence from combined fMRI and EEG
por: Lehongre, Katia, et al.
Publicado: (2013) -
Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI–fMRI connectivity correlations in children with and without dysgraphia or dyslexia
por: Richards, T.L., et al.
Publicado: (2015)