Cargando…
Multimodal Prediction of Alzheimer's Disease Severity Level Based on Resting-State EEG and Structural MRI
While several biomarkers have been developed for the detection of Alzheimer's disease (AD), not many are available for the prediction of disease severity, particularly for patients in the mild stages of AD. In this paper, we explore the multimodal prediction of Mini-Mental State Examination (MM...
Autores principales: | Jesus, Belmir, Cassani, Raymundo, McGeown, William J., Cecchi, Marco, Fadem, K. C., Falk, Tiago H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458963/ https://www.ncbi.nlm.nih.gov/pubmed/34566600 http://dx.doi.org/10.3389/fnhum.2021.700627 |
Ejemplares similares
-
Multimodal resting-state connectivity predicts affective neurofeedback performance
por: Trambaiolli, Lucas R., et al.
Publicado: (2022) -
Systematic Review on Resting-State EEG for Alzheimer's Disease Diagnosis and Progression Assessment
por: Cassani, Raymundo, et al.
Publicado: (2018) -
Cognition is entangled with metabolism: relevance for resting-state EEG-fMRI
por: Jacob, Michael, et al.
Publicado: (2023) -
Adaptive Filtering for Improved EEG-Based Mental Workload Assessment of Ambulant Users
por: Rosanne, Olivier, et al.
Publicado: (2021) -
Using CNN Saliency Maps and EEG Modulation Spectra for Improved and More Interpretable Machine Learning-Based Alzheimer's Disease Diagnosis
por: Lopes, Marilia, et al.
Publicado: (2023)