Cargando…
Training for object recognition with increasing spatial frequency: A comparison of deep learning with human vision
The ontogenetic development of human vision and the real-time neural processing of visual input exhibit a striking similarity—a sensitivity toward spatial frequencies that progresses in a coarse-to-fine manner. During early human development, sensitivity for higher spatial frequencies increases with...
Autores principales: | Avberšek, Lev Kiar, Zeman, Astrid, Op de Beeck, Hans |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458991/ https://www.ncbi.nlm.nih.gov/pubmed/34533580 http://dx.doi.org/10.1167/jov.21.10.14 |
Ejemplares similares
-
Using deep neural networks to evaluate object vision tasks in rats
por: Vinken, Kasper, et al.
Publicado: (2021) -
Deep learning in neuroimaging data analysis: Applications, challenges, and solutions
por: Avberšek, Lev Kiar, et al.
Publicado: (2022) -
Invariance in Visual Object Recognition Requires Training: A Computational Argument
por: Goris, Robbe L. T., et al.
Publicado: (2010) -
Orthogonal Representations of Object Shape and Category in Deep Convolutional Neural Networks and Human Visual Cortex
por: Zeman, Astrid A., et al.
Publicado: (2020) -
Neural Representations that Support Invariant Object Recognition
por: Goris, Robbe L. T., et al.
Publicado: (2009)