Cargando…
Complex Valued Deep Neural Networks for Nonlinear System Modeling
Deep learning models, such as convolutional neural networks (CNN), have been successfully applied in pattern recognition and system identification recent years. But for the cases of missing data and big noises, CNN does not work well for dynamic system modeling. In this paper, complex valued convolu...
Autores principales: | Lopez-Pacheco, Mario, Yu, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459346/ https://www.ncbi.nlm.nih.gov/pubmed/34580573 http://dx.doi.org/10.1007/s11063-021-10644-1 |
Ejemplares similares
-
Estimating and interpreting nonlinear receptive field of sensory neural responses with deep neural network models
por: Keshishian, Menoua, et al.
Publicado: (2020) -
Deep neural networks with knockoff features identify nonlinear causal relations and estimate effect sizes in complex biological systems
por: Fan, Zhenjiang, et al.
Publicado: (2023) -
Neural networks modelling and control: applications for unknown nonlinear delayed systems in discrete-time
por: Alanis, Alma Y, et al.
Publicado: (2020) -
Complex-Valued Neural Networks
por: Hirose, Akira
Publicado: (2012) -
Synchronization in Complex Networks of Nonlinear Dynamical Systems
por: Wu, Chai Wah
Publicado: (2007)