Cargando…
Electrochemical Detection of Dopamine and Riboflavine on a Screen-Printed Carbon Electrode Modified by AuNPs Derived from Rhanterium suaveolens Plant Extract
[Image: see text] A AuNP-modified screen-printed carbon electrode (AuNP/SPCE) for monitoring important biomolecules, such as dopamine (DA) and riboflavin (RF), having a high potential for personalized medicine and for continuous monitoring of human health is here proposed. AuNPs were synthesized usi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459371/ https://www.ncbi.nlm.nih.gov/pubmed/34568646 http://dx.doi.org/10.1021/acsomega.1c00793 |
Sumario: | [Image: see text] A AuNP-modified screen-printed carbon electrode (AuNP/SPCE) for monitoring important biomolecules, such as dopamine (DA) and riboflavin (RF), having a high potential for personalized medicine and for continuous monitoring of human health is here proposed. AuNPs were synthesized using the extract of Rhanterium suaveolens as a reducing medium and were characterized by UV–vis spectroscopy, dynamic light scattering (DLS), and scanning and transmission electron microscopy (SEM and TEM). The synthesized AuNPs appear spherical and present a bimodal size distribution with a maximum centered at around 30–50 nm. Cyclic voltammetry (CV) experiments demonstrated that the modified AuNP/SPCE sensor exhibits superior electrochemical performances to the bare SPCE. Low limits of detection (LODs) of 0.2 and 0.07 μM at S/N = 3 and sensitivities of 550.4 and 2399 μA mM(–1) cm(–2) were registered for DA and RF detection, respectively. Results demonstrate the promising electrochemical characteristics of the synthesized AuNPs and developed AuNP/SPCE electrochemical sensor for the determination of these important biomolecules. |
---|