Cargando…
Predicting Power Conversion Efficiency of Organic Photovoltaics: Models and Data Analysis
[Image: see text] In this paper, the ability of three selected machine learning neural and baseline models in predicting the power conversion efficiency (PCE) of organic photovoltaics (OPVs) using molecular structure information as an input is assessed. The bidirectional long short-term memory (gFSI...
Autores principales: | Eibeck, Andreas, Nurkowski, Daniel, Menon, Angiras, Bai, Jiaru, Wu, Jinkui, Zhou, Li, Mosbach, Sebastian, Akroyd, Jethro, Kraft, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459373/ https://www.ncbi.nlm.nih.gov/pubmed/34568656 http://dx.doi.org/10.1021/acsomega.1c02156 |
Ejemplares similares
-
Automated
Rational Design of Metal–Organic
Polyhedra
por: Kondinski, Aleksandar, et al.
Publicado: (2022) -
OntoPESScan: An
Ontology for Potential Energy Surface
Scans
por: Menon, Angiras, et al.
Publicado: (2023) -
Knowledge Engineering in Chemistry: From Expert Systems
to Agents of Creation
por: Kondinski, Aleksandar, et al.
Publicado: (2022) -
From Platform to Knowledge Graph: Evolution of Laboratory
Automation
por: Bai, Jiaru, et al.
Publicado: (2022) -
Automated Calibration of a Poly(oxymethylene) Dimethyl
Ether Oxidation Mechanism Using the Knowledge Graph Technology
por: Bai, Jiaru, et al.
Publicado: (2021)