Cargando…
Endothelial cells exposed to atheroprotective flow secrete follistatin-like 1 protein which reduces transcytosis and inflammation
BACKGROUND AND AIMS: When endothelium is cultured in wells swirled on an orbital shaker, cells at the well centre experience putatively atherogenic flow whereas those near the edge experience putatively atheroprotective flow. Transcellular transport is decreased equally in both regions, consistent w...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459397/ https://www.ncbi.nlm.nih.gov/pubmed/34425528 http://dx.doi.org/10.1016/j.atherosclerosis.2021.08.025 |
_version_ | 1784571511485497344 |
---|---|
author | Ghim, Mean Pang, Kuin T. Burnap, Sean A. Baig, Ferheen Yin, Xiaoke Arshad, Mehwish Mayr, Manuel Weinberg, Peter D. |
author_facet | Ghim, Mean Pang, Kuin T. Burnap, Sean A. Baig, Ferheen Yin, Xiaoke Arshad, Mehwish Mayr, Manuel Weinberg, Peter D. |
author_sort | Ghim, Mean |
collection | PubMed |
description | BACKGROUND AND AIMS: When endothelium is cultured in wells swirled on an orbital shaker, cells at the well centre experience putatively atherogenic flow whereas those near the edge experience putatively atheroprotective flow. Transcellular transport is decreased equally in both regions, consistent with it being reduced by a mediator released from cells in one part of the well and mixed in the swirling medium. Similar effects have been inferred for pro-inflammatory changes. Here we identify the mediator and flow characteristics stimulating its release. METHODS AND RESULTS: Medium conditioned by cells swirled at the edge, but not by cells swirled at the centre or cultured under static conditions, significantly reduced transendothelial transport of a low density lipoprotein (LDL)-sized tracer and tumor necrosis factor α (TNF-α)-induced activation and translocation of nuclear factor κB (NF-κB), adhesion molecule expression and monocyte adhesion. Inhibiting transcytosis similarly decreased tracer transport. Unbiased proteomics revealed that cells from the swirled edge secreted substantially more follistatin-like 1 (FSTL1) than cells from the swirled centre or from static wells. Exogenous FSTL1 reduced transport of the LDL-sized tracer and of LDL itself, as well as TNF-α-induced adhesion molecule expression. Bone morphogenetic protein 4 (BMP4) increased transport of the LDL-sized tracer and adhesion molecule expression; FSTL1 abolished these effects. CONCLUSIONS: Putatively atheroprotective flow stimulates secretion of FSTL1 by cultured endothelial cells. FSTL1 reduces transcellular transport of LDL-sized particles and of LDL itself, and inhibits endothelial activation. If this also occurs in vivo, it may account for the atheroprotective nature of such flow. |
format | Online Article Text |
id | pubmed-8459397 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-84593972021-09-28 Endothelial cells exposed to atheroprotective flow secrete follistatin-like 1 protein which reduces transcytosis and inflammation Ghim, Mean Pang, Kuin T. Burnap, Sean A. Baig, Ferheen Yin, Xiaoke Arshad, Mehwish Mayr, Manuel Weinberg, Peter D. Atherosclerosis Article BACKGROUND AND AIMS: When endothelium is cultured in wells swirled on an orbital shaker, cells at the well centre experience putatively atherogenic flow whereas those near the edge experience putatively atheroprotective flow. Transcellular transport is decreased equally in both regions, consistent with it being reduced by a mediator released from cells in one part of the well and mixed in the swirling medium. Similar effects have been inferred for pro-inflammatory changes. Here we identify the mediator and flow characteristics stimulating its release. METHODS AND RESULTS: Medium conditioned by cells swirled at the edge, but not by cells swirled at the centre or cultured under static conditions, significantly reduced transendothelial transport of a low density lipoprotein (LDL)-sized tracer and tumor necrosis factor α (TNF-α)-induced activation and translocation of nuclear factor κB (NF-κB), adhesion molecule expression and monocyte adhesion. Inhibiting transcytosis similarly decreased tracer transport. Unbiased proteomics revealed that cells from the swirled edge secreted substantially more follistatin-like 1 (FSTL1) than cells from the swirled centre or from static wells. Exogenous FSTL1 reduced transport of the LDL-sized tracer and of LDL itself, as well as TNF-α-induced adhesion molecule expression. Bone morphogenetic protein 4 (BMP4) increased transport of the LDL-sized tracer and adhesion molecule expression; FSTL1 abolished these effects. CONCLUSIONS: Putatively atheroprotective flow stimulates secretion of FSTL1 by cultured endothelial cells. FSTL1 reduces transcellular transport of LDL-sized particles and of LDL itself, and inhibits endothelial activation. If this also occurs in vivo, it may account for the atheroprotective nature of such flow. Elsevier 2021-09 /pmc/articles/PMC8459397/ /pubmed/34425528 http://dx.doi.org/10.1016/j.atherosclerosis.2021.08.025 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ghim, Mean Pang, Kuin T. Burnap, Sean A. Baig, Ferheen Yin, Xiaoke Arshad, Mehwish Mayr, Manuel Weinberg, Peter D. Endothelial cells exposed to atheroprotective flow secrete follistatin-like 1 protein which reduces transcytosis and inflammation |
title | Endothelial cells exposed to atheroprotective flow secrete follistatin-like 1 protein which reduces transcytosis and inflammation |
title_full | Endothelial cells exposed to atheroprotective flow secrete follistatin-like 1 protein which reduces transcytosis and inflammation |
title_fullStr | Endothelial cells exposed to atheroprotective flow secrete follistatin-like 1 protein which reduces transcytosis and inflammation |
title_full_unstemmed | Endothelial cells exposed to atheroprotective flow secrete follistatin-like 1 protein which reduces transcytosis and inflammation |
title_short | Endothelial cells exposed to atheroprotective flow secrete follistatin-like 1 protein which reduces transcytosis and inflammation |
title_sort | endothelial cells exposed to atheroprotective flow secrete follistatin-like 1 protein which reduces transcytosis and inflammation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459397/ https://www.ncbi.nlm.nih.gov/pubmed/34425528 http://dx.doi.org/10.1016/j.atherosclerosis.2021.08.025 |
work_keys_str_mv | AT ghimmean endothelialcellsexposedtoatheroprotectiveflowsecretefollistatinlike1proteinwhichreducestranscytosisandinflammation AT pangkuint endothelialcellsexposedtoatheroprotectiveflowsecretefollistatinlike1proteinwhichreducestranscytosisandinflammation AT burnapseana endothelialcellsexposedtoatheroprotectiveflowsecretefollistatinlike1proteinwhichreducestranscytosisandinflammation AT baigferheen endothelialcellsexposedtoatheroprotectiveflowsecretefollistatinlike1proteinwhichreducestranscytosisandinflammation AT yinxiaoke endothelialcellsexposedtoatheroprotectiveflowsecretefollistatinlike1proteinwhichreducestranscytosisandinflammation AT arshadmehwish endothelialcellsexposedtoatheroprotectiveflowsecretefollistatinlike1proteinwhichreducestranscytosisandinflammation AT mayrmanuel endothelialcellsexposedtoatheroprotectiveflowsecretefollistatinlike1proteinwhichreducestranscytosisandinflammation AT weinbergpeterd endothelialcellsexposedtoatheroprotectiveflowsecretefollistatinlike1proteinwhichreducestranscytosisandinflammation |