Cargando…
Active Semisupervised Model for Improving the Identification of Anticancer Peptides
[Image: see text] Cancer is one of the most dangerous threats to human health. Accurate identification of anticancer peptides (ACPs) is valuable for the development and design of new anticancer agents. However, most machine-learning algorithms have limited ability to identify ACPs, and their accurac...
Autores principales: | Cai, Lijun, Wang, Li, Fu, Xiangzheng, Zeng, Xiangxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459422/ https://www.ncbi.nlm.nih.gov/pubmed/34568678 http://dx.doi.org/10.1021/acsomega.1c03132 |
Ejemplares similares
-
mokapot: Fast
and Flexible Semisupervised Learning
for Peptide Detection
por: Fondrie, William E., et al.
Publicado: (2021) -
Semisupervised Kernel Marginal Fisher Analysis for Face Recognition
por: Wang, Ziqiang, et al.
Publicado: (2013) -
Online Coregularization for Multiview Semisupervised Learning
por: Sun, Boliang, et al.
Publicado: (2013) -
Self-Trained LMT for Semisupervised Learning
por: Fazakis, Nikos, et al.
Publicado: (2016) -
Semisupervised Deep State-Space Model for Plant Growth Modeling
por: Shibata, S., et al.
Publicado: (2020)