Cargando…
Using sound to understand protein sequence data: new sonification algorithms for protein sequences and multiple sequence alignments
BACKGROUND: The use of sound to represent sequence data—sonification—has great potential as an alternative and complement to visual representation, exploiting features of human psychoacoustic intuitions to convey nuance more effectively. We have created five parameter-mapping sonification algorithms...
Autores principales: | Martin, Edward J., Meagher, Thomas R., Barker, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459479/ https://www.ncbi.nlm.nih.gov/pubmed/34556048 http://dx.doi.org/10.1186/s12859-021-04362-7 |
Ejemplares similares
-
An enhanced algorithm for multiple sequence alignment of protein sequences using genetic algorithm
por: Kumar, Manish
Publicado: (2015) -
DNA sonification for public engagement in bioinformatics
por: Plaisier, Heleen, et al.
Publicado: (2021) -
Protein multiple sequence alignment by hybrid bio-inspired algorithms
por: Cutello, Vincenzo, et al.
Publicado: (2011) -
Exploring science with sound: sonification and the use of sonograms as data analysis tool
por: Vicinanza, Domenico, et al.
Publicado: (2017) -
Recent Evolutions of Multiple Sequence Alignment Algorithms
por: Notredame, Cédric
Publicado: (2007)