Cargando…
DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning
Drug–target interaction (DTI) prediction is a crucial step in drug discovery and repositioning as it reduces experimental validation costs if done right. Thus, developing in-silico methods to predict potential DTI has become a competitive research niche, with one of its main focuses being improving...
Autores principales: | Thafar, Maha A., Olayan, Rawan S., Albaradei, Somayah, Bajic, Vladimir B., Gojobori, Takashi, Essack, Magbubah, Gao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459562/ https://www.ncbi.nlm.nih.gov/pubmed/34551818 http://dx.doi.org/10.1186/s13321-021-00552-w |
Ejemplares similares
-
DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques
por: Thafar, Maha A., et al.
Publicado: (2020) -
Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning
por: Thafar, Maha A., et al.
Publicado: (2022) -
Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA
por: Albaradei, Somayah, et al.
Publicado: (2020) -
OncoRTT: Predicting novel oncology-related therapeutic targets using BERT embeddings and omics features
por: Thafar, Maha A., et al.
Publicado: (2023) -
Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models
por: Albaradei, Somayah, et al.
Publicado: (2021)