Cargando…

Nutrient loading and farm characteristics of giant gourami fish aquaculture systems in Lake Maninjau, Indonesia: basic knowledge of production performance

Background Aquaculture systems for giant gourami, Osphronemus goramy Lacepède (1801), have significantly improved fish production yields and food security in Indonesia. However, these systems also cause serious problems in terms of eutrophication in waterbodies. This study analysed the nutrient load...

Descripción completa

Detalles Bibliográficos
Autores principales: Syandri, Hafrijal, Azrita, Azrita, Sumiarsih, Eni, undefined, Elfiondri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459621/
https://www.ncbi.nlm.nih.gov/pubmed/34621506
http://dx.doi.org/10.12688/f1000research.52613.2
Descripción
Sumario:Background Aquaculture systems for giant gourami, Osphronemus goramy Lacepède (1801), have significantly improved fish production yields and food security in Indonesia. However, these systems also cause serious problems in terms of eutrophication in waterbodies. This study analysed the nutrient loading and farm characteristics of giant gourami in floating cages in Lake Maninjau. Method A total of 20 floating cages were used to record these nutrients in feed supply, female and male juvenile fish, dead fish and harvested fish to estimate nutrient loading. Data on the harvested fish, production cycle, stock number and cage capacity were used to estimate the stocking density, feeding rate, feed efficiency, and net fish yield, and the relationship between feed supply and nutrient loading and farm characteristics was analysed by least squares regression methods. Results A total of 20 floating cages released nutrients into waterbodies at an average rate of 236.27±60.44 kg/cycle for C, 84.52±20.86 kg/cycle for N and 8.70±3.63 kg/cycle for P. On average, fish production for each floating cage (±SD) was 1226±282 kg wet weight/cycle, and the net fish yield was 12.63±2.82 kg/m (3)/cycle. Survival rates ranged from 86.33 to 95.27%/cycle. The production cycles varied from 160 to 175 days with feed conversion ratios between 1.60 and 1.75, feed conversion efficiencies were between 0.58 and 0.63. The production parameters that had strong relationships with the net fish yield were feed supply ( r (2)=0.960), stocking rates ( r (2)=0.924) and feeding rates ( r (2)=0.961). In contrast, the length of the production cycle was not strongly related to the net fish yield ( r (2)=0.187). Conclusion Nutrient loading from the supplied feed was greater than that from the harvested fish, juvenile fish and dead fish. Increasing the net fish yield in floating cages was better predicted by the stocking densities and feeding levels than by the other factors.