Cargando…
Radiomics Models for the Preoperative Prediction of Pelvic and Sacral Tumor Types: A Single-Center Retrospective Study of 795 Cases
PURPOSE: To assess the performance of random forest (RF)-based radiomics approaches based on 3D computed tomography (CT) and clinical features to predict the types of pelvic and sacral tumors. MATERIALS AND METHODS: A total of 795 patients with pathologically confirmed pelvic and sacral tumors were...
Autores principales: | Yin, Ping, Zhi, Xin, Sun, Chao, Wang, Sicong, Liu, Xia, Chen, Lei, Hong, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459744/ https://www.ncbi.nlm.nih.gov/pubmed/34568036 http://dx.doi.org/10.3389/fonc.2021.709659 |
Ejemplares similares
-
Machine and Deep Learning Based Radiomics Models for Preoperative Prediction of Benign and Malignant Sacral Tumors
por: Yin, Ping, et al.
Publicado: (2020) -
Clinical-Deep Neural Network and Clinical-Radiomics Nomograms for Predicting the Intraoperative Massive Blood Loss of Pelvic and Sacral Tumors
por: Yin, Ping, et al.
Publicado: (2021) -
CT-Based Radiomics Signatures for Predicting the Risk Categorization of Thymic Epithelial Tumors
por: Liu, Jin, et al.
Publicado: (2021) -
MRI-Based Bone Marrow Radiomics Nomogram for Prediction of Overall Survival in Patients With Multiple Myeloma
por: Li, Yang, et al.
Publicado: (2021) -
The potential for different computed tomography-based machine learning networks to automatically segment and differentiate pelvic and sacral osteosarcoma from Ewing’s sarcoma
por: Yin, Ping, et al.
Publicado: (2023)