Cargando…
Modeling time series by aggregating multiple fuzzy cognitive maps
BACKGROUND: The real time series is affected by various combinations of influences, consequently, it has a variety of variation modality. It is hard to reflect the variation characteristic of the time series accurately when simulating time series only by a single model. Most of the existing methods...
Autores principales: | Yu, Tianming, Gan, Qunfeng, Feng, Guoliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459780/ https://www.ncbi.nlm.nih.gov/pubmed/34616897 http://dx.doi.org/10.7717/peerj-cs.726 |
Ejemplares similares
-
A hybrid forecasting model using LSTM and Prophet for energy consumption with decomposition of time series data
por: Arslan, Serdar
Publicado: (2022) -
A spatiotemporal ensemble machine learning framework for generating land use/land cover time-series maps for Europe (2000–2019) based on LUCAS, CORINE and GLAD Landsat
por: Witjes, Martijn, et al.
Publicado: (2022) -
A new model for learning-based forecasting procedure by combining k-means clustering and time series forecasting algorithms
por: Hartomo, Kristoko Dwi, et al.
Publicado: (2021) -
Forecasting Bitcoin closing price series using linear regression and neural networks models
por: Uras, Nicola, et al.
Publicado: (2020) -
A scalable discrete-time survival model for neural networks
por: Gensheimer, Michael F., et al.
Publicado: (2019)