Cargando…
Decoders configurations based on Unet family and feature pyramid network for COVID-19 segmentation on CT images
Coronavirus Disease 2019 (COVID-19) pandemic has been ferociously destroying global health and economics. According to World Health Organisation (WHO), until May 2021, more than one hundred million infected cases and 3.2 million deaths have been reported in over 200 countries. Unfortunately, the num...
Autores principales: | Nguyen, Hai Thanh, Bao Tran, Toan, Luong, Huong Hoang, Nguyen Huynh, Tuan Khoi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459784/ https://www.ncbi.nlm.nih.gov/pubmed/34616895 http://dx.doi.org/10.7717/peerj-cs.719 |
Ejemplares similares
-
PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans
por: Bougourzi, Fares, et al.
Publicado: (2023) -
TMD-Unet: Triple-Unet with Multi-Scale Input Features and Dense Skip Connection for Medical Image Segmentation
por: Tran, Song-Toan, et al.
Publicado: (2021) -
TDD-UNet:Transformer with double decoder UNet for COVID-19 lesions segmentation
por: Huang, Xuping, et al.
Publicado: (2022) -
An effective and comprehensible method to detect and evaluate retinal damage due to diabetes complications
por: Dao, Quang Toan, et al.
Publicado: (2023) -
BMDD: a novel approach for IoT platform (broker-less and microservice architecture, decentralized identity, and dynamic transmission messages)
por: Nguyen, Lam Tran Thanh, et al.
Publicado: (2022)