Cargando…
Plant Variety Selection Using Interaction Classes Derived From Factor Analytic Linear Mixed Models: Models With Independent Variety Effects
A major challenge in the analysis of plant breeding multi-environment datasets is the provision of meaningful and concise information for variety selection in the presence of variety by environment interaction (VEI). This is addressed in the current paper by fitting a factor analytic linear mixed mo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460066/ https://www.ncbi.nlm.nih.gov/pubmed/34567051 http://dx.doi.org/10.3389/fpls.2021.737462 |
_version_ | 1784571667882704896 |
---|---|
author | Smith, Alison Norman, Adam Kuchel, Haydn Cullis, Brian |
author_facet | Smith, Alison Norman, Adam Kuchel, Haydn Cullis, Brian |
author_sort | Smith, Alison |
collection | PubMed |
description | A major challenge in the analysis of plant breeding multi-environment datasets is the provision of meaningful and concise information for variety selection in the presence of variety by environment interaction (VEI). This is addressed in the current paper by fitting a factor analytic linear mixed model (FALMM) then using the fundamental factor analytic parameters to define groups of environments in the dataset within which there is minimal crossover VEI, but between which there may be substantial crossover VEI. These groups are consequently called interaction classes (iClasses). Given that the environments within an iClass exhibit minimal crossover VEI, it is then valid to obtain predictions of overall variety performance (across environments) for each iClass. These predictions can then be used not only to select the best varieties within each iClass but also to match varieties in terms of their patterns of VEI across iClasses. The latter is aided with the use of a new graphical tool called an iClass Interaction Plot. The ideas are introduced in this paper within the framework of FALMMs in which the genetic effects for different varieties are assumed independent. The application to FALMMs which include information on genetic relatedness is the subject of a subsequent paper. |
format | Online Article Text |
id | pubmed-8460066 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84600662021-09-24 Plant Variety Selection Using Interaction Classes Derived From Factor Analytic Linear Mixed Models: Models With Independent Variety Effects Smith, Alison Norman, Adam Kuchel, Haydn Cullis, Brian Front Plant Sci Plant Science A major challenge in the analysis of plant breeding multi-environment datasets is the provision of meaningful and concise information for variety selection in the presence of variety by environment interaction (VEI). This is addressed in the current paper by fitting a factor analytic linear mixed model (FALMM) then using the fundamental factor analytic parameters to define groups of environments in the dataset within which there is minimal crossover VEI, but between which there may be substantial crossover VEI. These groups are consequently called interaction classes (iClasses). Given that the environments within an iClass exhibit minimal crossover VEI, it is then valid to obtain predictions of overall variety performance (across environments) for each iClass. These predictions can then be used not only to select the best varieties within each iClass but also to match varieties in terms of their patterns of VEI across iClasses. The latter is aided with the use of a new graphical tool called an iClass Interaction Plot. The ideas are introduced in this paper within the framework of FALMMs in which the genetic effects for different varieties are assumed independent. The application to FALMMs which include information on genetic relatedness is the subject of a subsequent paper. Frontiers Media S.A. 2021-09-09 /pmc/articles/PMC8460066/ /pubmed/34567051 http://dx.doi.org/10.3389/fpls.2021.737462 Text en Copyright © 2021 Smith, Norman, Kuchel and Cullis. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Smith, Alison Norman, Adam Kuchel, Haydn Cullis, Brian Plant Variety Selection Using Interaction Classes Derived From Factor Analytic Linear Mixed Models: Models With Independent Variety Effects |
title | Plant Variety Selection Using Interaction Classes Derived From Factor Analytic Linear Mixed Models: Models With Independent Variety Effects |
title_full | Plant Variety Selection Using Interaction Classes Derived From Factor Analytic Linear Mixed Models: Models With Independent Variety Effects |
title_fullStr | Plant Variety Selection Using Interaction Classes Derived From Factor Analytic Linear Mixed Models: Models With Independent Variety Effects |
title_full_unstemmed | Plant Variety Selection Using Interaction Classes Derived From Factor Analytic Linear Mixed Models: Models With Independent Variety Effects |
title_short | Plant Variety Selection Using Interaction Classes Derived From Factor Analytic Linear Mixed Models: Models With Independent Variety Effects |
title_sort | plant variety selection using interaction classes derived from factor analytic linear mixed models: models with independent variety effects |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460066/ https://www.ncbi.nlm.nih.gov/pubmed/34567051 http://dx.doi.org/10.3389/fpls.2021.737462 |
work_keys_str_mv | AT smithalison plantvarietyselectionusinginteractionclassesderivedfromfactoranalyticlinearmixedmodelsmodelswithindependentvarietyeffects AT normanadam plantvarietyselectionusinginteractionclassesderivedfromfactoranalyticlinearmixedmodelsmodelswithindependentvarietyeffects AT kuchelhaydn plantvarietyselectionusinginteractionclassesderivedfromfactoranalyticlinearmixedmodelsmodelswithindependentvarietyeffects AT cullisbrian plantvarietyselectionusinginteractionclassesderivedfromfactoranalyticlinearmixedmodelsmodelswithindependentvarietyeffects |