Cargando…

Virus structure and structure-based antivirals

Structure-based antiviral developments in the past two years have been dominated by the structure determination and inhibition of SARS-CoV-2 proteins and new lead molecules for picornaviruses. The SARS-CoV-2 spike protein has been targeted successfully with antibodies, nanobodies, and receptor prote...

Descripción completa

Detalles Bibliográficos
Autores principales: Plavec, Zlatka, Pöhner, Ina, Poso, Antti, Butcher, Sarah J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460353/
https://www.ncbi.nlm.nih.gov/pubmed/34564030
http://dx.doi.org/10.1016/j.coviro.2021.09.005
Descripción
Sumario:Structure-based antiviral developments in the past two years have been dominated by the structure determination and inhibition of SARS-CoV-2 proteins and new lead molecules for picornaviruses. The SARS-CoV-2 spike protein has been targeted successfully with antibodies, nanobodies, and receptor protein mimics effectively blocking receptor binding or fusion. The two most promising non-structural proteins sharing strong structural and functional conservation across virus families are the main protease and the RNA-dependent RNA polymerase, for which design and reuse of broad range inhibitors already approved for use has been an attractive avenue. For picornaviruses, the increasing recognition of the transient expansion of the capsid as a critical transition towards RNA release has been targeted through a newly identified, apparently widely conserved, druggable, interprotomer pocket preventing viral entry. We summarize some of the key papers in these areas and ponder the practical uses and contributions of molecular modeling alongside empirical structure determination.