Cargando…
The Short-Term Load Forecasting for Special Days Based on Bagged Regression Trees in Qingdao, China
There are many factors that affect short-term load forecasting performance, such as weather and holidays. However, most of the existing load forecasting models lack more detailed considerations for some special days. In this paper, the applicability of the bagged regression trees (BRT) model combine...
Autores principales: | Dong, Huanhe, Gao, Ya, Fang, Yong, Liu, Mingshuo, Kong, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460367/ https://www.ncbi.nlm.nih.gov/pubmed/34567100 http://dx.doi.org/10.1155/2021/3693294 |
Ejemplares similares
-
The Short-Term Load Forecasting Using an Artificial Neural Network Approach with Periodic and Nonperiodic Factors: A Case Study of Tai'an, Shandong Province, China
por: Sun, Jiuyun, et al.
Publicado: (2021) -
Rapid Response to an Outbreak in Qingdao, China
por: Xing, Yuhan, et al.
Publicado: (2020) -
Short term Markov corrector for building load forecasting system – Concept and case study of day-ahead load forecasting under the impact of the COVID-19 pandemic
por: Nguyen, Van Hoa, et al.
Publicado: (2022) -
Natural Mediterranean Spotted Fever Foci, Qingdao, China
por: Gu, Xiao-Lan, et al.
Publicado: (2022) -
Spatiotemporal Features of the Three-Dimensional Architectural Landscape in Qingdao, China
por: Zhang, Peifeng
Publicado: (2015)