Cargando…
Microbial occurrence in liquid nitrogen storage tanks: a challenge for cryobanking?
ABSTRACT: Modern biobanks maintain valuable living materials for medical diagnostics, reproduction medicine, and conservation purposes. To guarantee high quality during long-term storage and to avoid metabolic activities, cryostorage is often conducted in the N(2) vapour phase or in liquid nitrogen...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460408/ https://www.ncbi.nlm.nih.gov/pubmed/34559283 http://dx.doi.org/10.1007/s00253-021-11531-4 |
_version_ | 1784571744996032512 |
---|---|
author | Bajerski, Felizitas Nagel, Manuela Overmann, Joerg |
author_facet | Bajerski, Felizitas Nagel, Manuela Overmann, Joerg |
author_sort | Bajerski, Felizitas |
collection | PubMed |
description | ABSTRACT: Modern biobanks maintain valuable living materials for medical diagnostics, reproduction medicine, and conservation purposes. To guarantee high quality during long-term storage and to avoid metabolic activities, cryostorage is often conducted in the N(2) vapour phase or in liquid nitrogen (LN) at temperatures below − 150 °C. One potential risk of cryostorage is microbial cross contamination in the LN storage tanks. The current review summarises data on the occurrence of microorganisms that may compromise the safety and quality of biological materials during long-term storage. We assess the potential for the microbial contamination of LN in storage tanks holding different biological materials based on the detection by culture-based and molecular approaches. The samples themselves, the LN, the human microbiome, and the surrounding environment are possible routes of contamination and can cause cross contaminations via the LN phase. In general, the results showed that LN is typically not the source of major contaminations and only a few studies provided evidence for a risk of microbial cross contamination. So far, culture-based and culture-independent techniques detected only low amounts of microbial cells, indicating that cross contamination may occur at a very low frequency. To further minimise the potential risk of microbial cross contaminations, we recommend reducing the formation of ice crystals in cryotanks that can entrap environmental microorganisms and using sealed or second sample packing. A short survey demonstrated the awareness for microbial contaminations of storage containers among different culture collections. Although most participants consider the risk of cross contaminations in LN storage tanks as low, they prevent potential contaminations by using sealed devices and − 150 °C freezers. It is concluded that the overall risk for cross contaminations in biobanks is relatively low when following standard operating procedures (SOPs). We evaluated the potential sources in detail and summarised our results in a risk assessment spreadsheet which can be used for the quality management of biobanks. KEY POINTS: • Identification of potential contaminants and their sources in LN storage tanks. • Recommendations to reduce this risk of LN storage tank contamination. • Development of a risk assessment spreadsheet to support quality management. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00253-021-11531-4. |
format | Online Article Text |
id | pubmed-8460408 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-84604082021-09-24 Microbial occurrence in liquid nitrogen storage tanks: a challenge for cryobanking? Bajerski, Felizitas Nagel, Manuela Overmann, Joerg Appl Microbiol Biotechnol Mini-Review ABSTRACT: Modern biobanks maintain valuable living materials for medical diagnostics, reproduction medicine, and conservation purposes. To guarantee high quality during long-term storage and to avoid metabolic activities, cryostorage is often conducted in the N(2) vapour phase or in liquid nitrogen (LN) at temperatures below − 150 °C. One potential risk of cryostorage is microbial cross contamination in the LN storage tanks. The current review summarises data on the occurrence of microorganisms that may compromise the safety and quality of biological materials during long-term storage. We assess the potential for the microbial contamination of LN in storage tanks holding different biological materials based on the detection by culture-based and molecular approaches. The samples themselves, the LN, the human microbiome, and the surrounding environment are possible routes of contamination and can cause cross contaminations via the LN phase. In general, the results showed that LN is typically not the source of major contaminations and only a few studies provided evidence for a risk of microbial cross contamination. So far, culture-based and culture-independent techniques detected only low amounts of microbial cells, indicating that cross contamination may occur at a very low frequency. To further minimise the potential risk of microbial cross contaminations, we recommend reducing the formation of ice crystals in cryotanks that can entrap environmental microorganisms and using sealed or second sample packing. A short survey demonstrated the awareness for microbial contaminations of storage containers among different culture collections. Although most participants consider the risk of cross contaminations in LN storage tanks as low, they prevent potential contaminations by using sealed devices and − 150 °C freezers. It is concluded that the overall risk for cross contaminations in biobanks is relatively low when following standard operating procedures (SOPs). We evaluated the potential sources in detail and summarised our results in a risk assessment spreadsheet which can be used for the quality management of biobanks. KEY POINTS: • Identification of potential contaminants and their sources in LN storage tanks. • Recommendations to reduce this risk of LN storage tank contamination. • Development of a risk assessment spreadsheet to support quality management. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00253-021-11531-4. Springer Berlin Heidelberg 2021-09-24 2021 /pmc/articles/PMC8460408/ /pubmed/34559283 http://dx.doi.org/10.1007/s00253-021-11531-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Mini-Review Bajerski, Felizitas Nagel, Manuela Overmann, Joerg Microbial occurrence in liquid nitrogen storage tanks: a challenge for cryobanking? |
title | Microbial occurrence in liquid nitrogen storage tanks: a challenge for cryobanking? |
title_full | Microbial occurrence in liquid nitrogen storage tanks: a challenge for cryobanking? |
title_fullStr | Microbial occurrence in liquid nitrogen storage tanks: a challenge for cryobanking? |
title_full_unstemmed | Microbial occurrence in liquid nitrogen storage tanks: a challenge for cryobanking? |
title_short | Microbial occurrence in liquid nitrogen storage tanks: a challenge for cryobanking? |
title_sort | microbial occurrence in liquid nitrogen storage tanks: a challenge for cryobanking? |
topic | Mini-Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460408/ https://www.ncbi.nlm.nih.gov/pubmed/34559283 http://dx.doi.org/10.1007/s00253-021-11531-4 |
work_keys_str_mv | AT bajerskifelizitas microbialoccurrenceinliquidnitrogenstoragetanksachallengeforcryobanking AT nagelmanuela microbialoccurrenceinliquidnitrogenstoragetanksachallengeforcryobanking AT overmannjoerg microbialoccurrenceinliquidnitrogenstoragetanksachallengeforcryobanking |