Cargando…
Quantifying representativeness in randomized clinical trials using machine learning fairness metrics
OBJECTIVE: We help identify subpopulations underrepresented in randomized clinical trials (RCTs) cohorts with respect to national, community-based or health system target populations by formulating population representativeness of RCTs as a machine learning (ML) fairness problem, deriving new repres...
Autores principales: | Qi, Miao, Cahan, Owen, Foreman, Morgan A, Gruen, Daniel M, Das, Amar K, Bennett, Kristin P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460438/ https://www.ncbi.nlm.nih.gov/pubmed/34568771 http://dx.doi.org/10.1093/jamiaopen/ooab077 |
Ejemplares similares
-
The geodiv r package: Tools for calculating gradient surface metrics
por: Smith, Annie C., et al.
Publicado: (2021) -
Machine learning for early detection of sepsis: an internal and temporal validation study
por: Bedoya, Armando D, et al.
Publicado: (2020) -
Homœopathy Fairly Represented
por: Henderson, Wm.
Publicado: (1855) -
Mauve Assembly Metrics
por: Darling, Aaron E., et al.
Publicado: (2011) -
Efficient computation of contributional diversity metrics from microbiome data with FuncDiv
por: Douglas, Gavin M, et al.
Publicado: (2022)