Cargando…

The impact of rosuvastatin on hypothalamic–pituitary–testicular axis activity in metformin-treated and metformin-naïve men with low testosterone levels: a pilot study

BACKGROUND: Intense statin therapy was found to impair testosterone production in men. Metformin administered to subjects with hypergonadotropic hypogonadism decreased gonadotropin production. The current study was aimed at investigating whether metformin treatment modulates the impact of high-dose...

Descripción completa

Detalles Bibliográficos
Autores principales: Krysiak, Robert, Basiak, Marcin, Szkróbka, Witold, Okopień, Bogusław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460565/
https://www.ncbi.nlm.nih.gov/pubmed/34086261
http://dx.doi.org/10.1007/s43440-021-00289-1
Descripción
Sumario:BACKGROUND: Intense statin therapy was found to impair testosterone production in men. Metformin administered to subjects with hypergonadotropic hypogonadism decreased gonadotropin production. The current study was aimed at investigating whether metformin treatment modulates the impact of high-dose rosuvastatin therapy on hypothalamic–pituitary–testicular axis activity in men. METHODS: The study included 43 very high cardiovascular risk men with late-onset hypogonadism, 20 of whom had been treated with metformin (1.7–3 g daily) for at least 6 months. In all subjects, unsuccessful initial statin treatment was replaced with rosuvastatin (20–40 mg daily). Plasma lipid levels, glucose homeostasis markers, as well as circulating levels of gonadotropins, testosterone, bioavailable testosterone, dehydroepiandrosterone-sulfate, prolactin, estradiol and creatinine were measured at the beginning of the study and 4 months later in 28 individuals in whom rosuvastatin reduced LDL cholesterol levels to below 70 mg/dL. RESULTS: There were no differences between treatment-induced changes in plasma lipids. In both study groups, rosuvastatin reduced total and bioavailable testosterone levels. However, only in metformin-naïve men, rosuvastatin increased LH and FSH levels and slightly impaired insulin sensitivity. The impact on gonadotropin concentrations correlated with treatment-induced decrease in testosterone levels. There were no significant differences between baseline and posttreatment values of dehydroepiandrosterone-sulfate, prolactin, estradiol and the glomerular filtration rate. CONCLUSION: The obtained results suggest that metformin prevents the compensatory increase in gonadotrope function induced by intense statin therapy.