Cargando…
Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors
Brain tumors represent the highest cause of mortality in the pediatric oncological population. Diagnosis is commonly performed with magnetic resonance imaging. Survival biomarkers are challenging to identify due to the relatively low numbers of individual tumor types. 69 children with biopsy-confirm...
Autores principales: | Grist, James T., Withey, Stephanie, Bennett, Christopher, Rose, Heather E. L., MacPherson, Lesley, Oates, Adam, Powell, Stephen, Novak, Jan, Abernethy, Laurence, Pizer, Barry, Bailey, Simon, Clifford, Steven C., Mitra, Dipayan, Arvanitis, Theodoros N., Auer, Dorothee P., Avula, Shivaram, Grundy, Richard, Peet, Andrew C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460620/ https://www.ncbi.nlm.nih.gov/pubmed/34556677 http://dx.doi.org/10.1038/s41598-021-96189-8 |
Ejemplares similares
-
Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study
por: Grist, James T., et al.
Publicado: (2020) -
IMG-06. PREDICTING SURVIVAL FROM PERFUSION AND DIFFUSION MRI BY MACHINE LEARNING
por: Grist, James T, et al.
Publicado: (2020) -
Dynamic susceptibility-contrast magnetic resonance imaging with contrast agent leakage correction aids in predicting grade in pediatric brain tumours: a multicenter study
por: Withey, Stephanie B., et al.
Publicado: (2022) -
Applying machine learning classifiers to automate quality assessment of paediatric dynamic susceptibility contrast (DSC-) MRI data
por: Powell, Stephen J., et al.
Publicado: (2023) -
Application of pattern recognition techniques for classification of pediatric brain tumors by in vivo 3T (1)H‐MR spectroscopy—A multi‐center study
por: Zarinabad, Niloufar, et al.
Publicado: (2017)