Cargando…
A novel lncRNA–protein interaction prediction method based on deep forest with cascade forest structure
Long noncoding RNAs (lncRNAs) regulate many biological processes by interacting with corresponding RNA-binding proteins. The identification of lncRNA–protein Interactions (LPIs) is significantly important to well characterize the biological functions and mechanisms of lncRNAs. Existing computational...
Autores principales: | Tian, Xiongfei, Shen, Ling, Wang, Zhenwu, Zhou, Liqian, Peng, Lihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460650/ https://www.ncbi.nlm.nih.gov/pubmed/34556758 http://dx.doi.org/10.1038/s41598-021-98277-1 |
Ejemplares similares
-
LPI-deepGBDT: a multiple-layer deep framework based on gradient boosting decision trees for lncRNA–protein interaction identification
por: Zhou, Liqian, et al.
Publicado: (2021) -
LPI-HyADBS: a hybrid framework for lncRNA-protein interaction prediction integrating feature selection and classification
por: Zhou, Liqian, et al.
Publicado: (2021) -
Probing lncRNA–Protein Interactions: Data Repositories, Models, and Algorithms
por: Peng, Lihong, et al.
Publicado: (2020) -
LPI-EnEDT: an ensemble framework with extra tree and decision tree classifiers for imbalanced lncRNA-protein interaction data classification
por: Peng, Lihong, et al.
Publicado: (2021) -
A random forest based computational model for predicting novel lncRNA-disease associations
por: Yao, Dengju, et al.
Publicado: (2020)