Cargando…

Isolated skyrmion, skyrmion lattice and antiskyrmion lattice creation through magnetization reversal in Co/Pd nanostructure

Skyrmion and antiskyrmion spin textures are axisymmetric inhomogeneous localized objects with distinct chirality in magnetic systems. These spin textures are potential candidates for the next generation energy-efficient spintronic applications due to their unique topological properties. Controlled a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kandukuri, Sateesh, Murthy, V. Satya Narayana, Thiruvikraman, P. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460664/
https://www.ncbi.nlm.nih.gov/pubmed/34556719
http://dx.doi.org/10.1038/s41598-021-98337-6
Descripción
Sumario:Skyrmion and antiskyrmion spin textures are axisymmetric inhomogeneous localized objects with distinct chirality in magnetic systems. These spin textures are potential candidates for the next generation energy-efficient spintronic applications due to their unique topological properties. Controlled and effective creation of the spin textures is required to use in conventional and neuromorphic computing applications. Here we show by micromagnetic simulations creating an isolated skyrmion, skyrmion lattice and antiskyrmion lattice through the magnetization reversal in Co/Pd multilayer nanostructure using spin-polarized current. The spin textures' stability depends on the spin-polarized current density, current pulse width, and Dzyaloshinskii–Moriya interaction (DMI). Antiskyrmions are evolved during the formation of a single skyrmion and skyrmion lattice. Skyrmion and antiskyrmion lattices together are observed for lower pulse width, 0.05 ns. Our micromagnetic studies suggest that the two distinct lattice phases' evolution could help to design the topological spin textures-based devices.