Cargando…
Genetic mutation and biological pathway prediction based on whole slide images in breast carcinoma using deep learning
Breast carcinoma is the most common cancer among women worldwide that consists of a heterogeneous group of subtype diseases. The whole-slide images (WSIs) can capture the cell-level heterogeneity, and are routinely used for cancer diagnosis by pathologists. However, key driver genetic mutations rela...
Autores principales: | Qu, Hui, Zhou, Mu, Yan, Zhennan, Wang, He, Rustgi, Vinod K., Zhang, Shaoting, Gevaert, Olivier, Metaxas, Dimitris N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460699/ https://www.ncbi.nlm.nih.gov/pubmed/34556802 http://dx.doi.org/10.1038/s41698-021-00225-9 |
Ejemplares similares
-
A Large-scale Synthetic Pathological Dataset for Deep Learning-enabled Segmentation of Breast Cancer
por: Ding, Kexin, et al.
Publicado: (2023) -
Mining multi-center heterogeneous medical data with distributed synthetic learning
por: Chang, Qi, et al.
Publicado: (2023) -
Publisher Correction: Mining multi-center heterogeneous medical data with distributed synthetic learning
por: Chang, Qi, et al.
Publicado: (2023) -
Deep Learning for Whole Slide Image Analysis: An Overview
por: Dimitriou, Neofytos, et al.
Publicado: (2019) -
Whole slide images reflect DNA methylation patterns of human tumors
por: Zheng, Hong, et al.
Publicado: (2020)