Cargando…
Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia
Accurately predicting meteorological parameters such as air temperature and humidity plays a crucial role in air quality management. This study proposes different machine learning algorithms: Gradient Boosting Tree (G.B.T.), Random forest (R.F.), Linear regression (LR) and different artificial neura...
Autores principales: | Hanoon, Marwah Sattar, Ahmed, Ali Najah, Zaini, Nur’atiah, Razzaq, Arif, Kumar, Pavitra, Sherif, Mohsen, Sefelnasr, Ahmed, El-Shafie, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460791/ https://www.ncbi.nlm.nih.gov/pubmed/34556676 http://dx.doi.org/10.1038/s41598-021-96872-w |
Ejemplares similares
-
Rainfall-runoff modelling based on global climate model and tropical rainfall measuring mission (GCM -TRMM): A case study in Hulu Terengganu catchment, Malaysia
por: Che Wan Zanial, Wan Norsyuhada, et al.
Publicado: (2023) -
PM2.5 forecasting for an urban area based on deep learning and decomposition method
por: Zaini, Nur’atiah, et al.
Publicado: (2022) -
Bryophyte flora of Mount Tebu Forest Reserve, Terengganu, Peninsular Malaysia
por: Atiqah, Nur Saidatul, et al.
Publicado: (2023) -
Exploring machine learning algorithms for accurate water level forecasting in Muda river, Malaysia
por: Adli Zakaria, Muhamad Nur, et al.
Publicado: (2023) -
Suspended sediment load prediction using long short-term memory neural network
por: AlDahoul, Nouar, et al.
Publicado: (2021)