Cargando…
Distance-based clustering challenges for unbiased benchmarking studies
Benchmark datasets with predefined cluster structures and high-dimensional biomedical datasets outline the challenges of cluster analysis: clustering algorithms are limited in their clustering ability in the presence of clusters defining distance-based structures resulting in a biased clustering sol...
Autor principal: | Thrun, Michael C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460803/ https://www.ncbi.nlm.nih.gov/pubmed/34556686 http://dx.doi.org/10.1038/s41598-021-98126-1 |
Ejemplares similares
-
Publisher Correction: Distance-based clustering challenges for unbiased benchmarking studies
por: Thrun, Michael C.
Publicado: (2021) -
Clustering benchmark datasets exploiting the fundamental clustering problems
por: Thrun, Michael C., et al.
Publicado: (2020) -
An Unbiased
Method To Build Benchmarking Sets for
Ligand-Based Virtual Screening and its Application To GPCRs
por: Xia, Jie, et al.
Publicado: (2014) -
The CERN benchmarking cluster
por: Iribarren, Alex
Publicado: (2008) -
Unbiased choice of global clustering parameters for single-molecule localization microscopy
por: Verzelli, Pietro, et al.
Publicado: (2022)