Cargando…
Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics
Advances in single-cell technologies allow scrutinizing of heterogeneous cell states, however, detecting cell-state transitions from snap-shot single-cell transcriptome data remains challenging. To investigate cells with transient properties or mixed identities, we present MuTrans, a method based on...
Autores principales: | Zhou, Peijie, Wang, Shuxiong, Li, Tiejun, Nie, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460805/ https://www.ncbi.nlm.nih.gov/pubmed/34556644 http://dx.doi.org/10.1038/s41467-021-25548-w |
Ejemplares similares
-
Inference and multiscale model of epithelial-to-mesenchymal transition via single-cell transcriptomic data
por: Sha, Yutong, et al.
Publicado: (2020) -
Inference of Intercellular Communications and Multilayer Gene-Regulations of Epithelial–Mesenchymal Transition From Single-Cell Transcriptomic Data
por: Sha, Yutong, et al.
Publicado: (2021) -
spliceJAC: transition genes and state‐specific gene regulation from single‐cell transcriptome data
por: Bocci, Federico, et al.
Publicado: (2022) -
exFINDER: identify external communication signals using single-cell transcriptomics data
por: He, Changhan, et al.
Publicado: (2023) -
exFINDER: identify external communication signals using single-cell transcriptomics data
por: He, Changhan, et al.
Publicado: (2023)