Cargando…
Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
Particle accelerators are invaluable discovery engines in the chemical, biological and physical sciences. Characterization of the accelerated beam response to accelerator input parameters is often the first step when conducting accelerator-based experiments. Currently used techniques for characteriz...
Autores principales: | Roussel, Ryan, Gonzalez-Aguilera, Juan Pablo, Kim, Young-Kee, Wisniewski, Eric, Liu, Wanming, Piot, Philippe, Power, John, Hanuka, Adi, Edelen, Auralee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460822/ https://www.ncbi.nlm.nih.gov/pubmed/34556642 http://dx.doi.org/10.1038/s41467-021-25757-3 |
Ejemplares similares
-
Turn-key Applications for Accelerators with LabVIEW-RADE
por: Andreassen, O O, et al.
Publicado: (2011) -
RF Activities on Cavities and Turn Key Accelerator Systems at ACCEL
por: Vom Stein, P, et al.
Publicado: (2001) -
Laser-Induced Linear-Field Particle Acceleration in Free Space
por: Wong, Liang Jie, et al.
Publicado: (2017) -
Opportunities in Machine Learning for Particle Accelerators
por: Edelen, A., et al.
Publicado: (2018) -
A Bayesian Approach to the Constrained MSMM
por: Roszkowski, Leszek, et al.
Publicado: (2008)