Cargando…
Low serum vitamin D concentrations in Spring-born dairy calves are associated with elevated peripheral leukocytes
A role for vitamin D in the immune system is emerging from human research but data in the bovine is limited. In the current study, 48 Holstein–Friesian calves were randomly assigned to one of 4 groups designed to expose calves to divergent vitamin D levels for a 7 month period and to determine its e...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460825/ https://www.ncbi.nlm.nih.gov/pubmed/34556723 http://dx.doi.org/10.1038/s41598-021-98343-8 |
Sumario: | A role for vitamin D in the immune system is emerging from human research but data in the bovine is limited. In the current study, 48 Holstein–Friesian calves were randomly assigned to one of 4 groups designed to expose calves to divergent vitamin D levels for a 7 month period and to determine its effects on circulating immunity in young calves. Concentrations of circulating 25-hydroxyvitamin D (25OHD) was measured in serum using a commercial ELISA with validated bovine standards. Results showed that mean circulating concentrations of 25OHD at birth was 7.64 ± 3.21 ng/ml indicating vitamin D deficiency. Neither the injection of Vit D(3) at birth nor the elevated levels in milk replacer yield discernible changes to pre-weaning circulating concentration of 25OHD. No calf reached the recommended level of vitamin D immune sufficiencyof 30 ng/ml of 25OHD until at least 3 months of age (T4). Increasing dietary Vit D(3) via ration in the post-weaning period significantly elevated 25OHD concentrations in serum in VitD-In calves. Maximal levels of circulating 25OHD were achieved in VitD-Out calves, reaching 60.86 ± 7.32 ng/ml at 5 months of age (T7). Greatest divergence in haematology profile was observed between Ctl-In vs VitD-In groups with Ctl-In calves showing an elevated count of neutrophils, eosinophils, and basophils associated with reduced 25OHD concentrations. Neither IL-8 expression nor ROS production in serum were significantly different between calves with high and low 25OHD, indicating that other vitamin D-dependent mechanisms may contribute to the divergent circulating cellular profiles observed. This novel data on the vitamin D status of neonatal calves identifies a significant window of vitamin D insufficiency which is associated with significant differences in circulating immune cell profiles. Vitamin D insufficiency may therefore exacerbate pre-weaning disease susceptibility, and further work in now warranted. |
---|