Cargando…

Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe(2)

Moiré superlattices in van der Waals heterostructures provide a tunable platform to study emergent properties that are absent in the natural crystal form. Twisted bilayer transition metal dichalcogenides (TB-TMDs) can host moiré flat bands over a wide range of twist angles. For twist angle close to...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, En, Hu, Jin-Xin, Feng, Xuemeng, Zhou, Zishu, An, Liheng, Law, Kam Tuen, Wang, Ning, Lin, Nian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460827/
https://www.ncbi.nlm.nih.gov/pubmed/34556663
http://dx.doi.org/10.1038/s41467-021-25924-6
Descripción
Sumario:Moiré superlattices in van der Waals heterostructures provide a tunable platform to study emergent properties that are absent in the natural crystal form. Twisted bilayer transition metal dichalcogenides (TB-TMDs) can host moiré flat bands over a wide range of twist angles. For twist angle close to 60°, it was predicted that TB-TMDs undergo a lattice reconstruction which causes the formation of ultra-flat bands. Here, by using scanning tunneling microscopy and spectroscopy, we show the emergence of multiple ultra-flat bands in twisted bilayer WSe(2) when the twist angle is within 3° of 60°. The ultra-flat bands are manifested as narrow tunneling conductance peaks with estimated bandwidth less than 10 meV, which is only a fraction of the estimated on-site Coulomb repulsion energy. The number of these ultra-flat bands and spatial distribution of the wavefunctions match well with the theoretical predictions, strongly evidencing that the observed ultra-flat bands are induced by lattice reconstruction. Our work provides a foundation for further study of the exotic correlated phases in TB-TMDs.