Cargando…
Factor-Based Framework for Multivariate and Multi-step-ahead Forecasting of Large Scale Time Series
State-of-the-art multivariate forecasting methods are restricted to low dimensional tasks, linear dependencies and short horizons. The technological advances (notably the Big data revolution) are instead shifting the focus to problems characterized by a large number of variables, non-linear dependen...
Autores principales: | De Stefani, Jacopo, Bontempi, Gianluca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460934/ https://www.ncbi.nlm.nih.gov/pubmed/34568817 http://dx.doi.org/10.3389/fdata.2021.690267 |
Ejemplares similares
-
AI in Healthcare: Time-Series Forecasting Using Statistical, Neural, and Ensemble Architectures
por: Kaushik, Shruti, et al.
Publicado: (2020) -
Nonstationary time series forecasting using optimized-EVDHM-ARIMA for COVID-19
por: Nagvanshi, Suraj Singh, et al.
Publicado: (2023) -
Development of a Machine Learning Approach for Local-Scale Ozone Forecasting: Application to Kennewick, WA
por: Fan, Kai, et al.
Publicado: (2022) -
Multi-scale governance and data for sustainable development
por: Pastor-Escuredo, David, et al.
Publicado: (2022) -
Air Quality Forecast by Statistical Methods: Application to Portugal and Macao
por: Mendes, Luísa, et al.
Publicado: (2022)