Cargando…

Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study

BACKGROUND: Response to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning-based classifiers to detect microsatellite instability and EBV statu...

Descripción completa

Detalles Bibliográficos
Autores principales: Muti, Hannah Sophie, Heij, Lara Rosaline, Keller, Gisela, Kohlruss, Meike, Langer, Rupert, Dislich, Bastian, Cheong, Jae-Ho, Kim, Young-Woo, Kim, Hyunki, Kook, Myeong-Cherl, Cunningham, David, Allum, William H, Langley, Ruth E, Nankivell, Matthew G, Quirke, Philip, Hayden, Jeremy D, West, Nicholas P, Irvine, Andrew J, Yoshikawa, Takaki, Oshima, Takashi, Huss, Ralf, Grosser, Bianca, Roviello, Franco, d'Ignazio, Alessia, Quaas, Alexander, Alakus, Hakan, Tan, Xiuxiang, Pearson, Alexander T, Luedde, Tom, Ebert, Matthias P, Jäger, Dirk, Trautwein, Christian, Gaisa, Nadine Therese, Grabsch, Heike I, Kather, Jakob Nikolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460994/
https://www.ncbi.nlm.nih.gov/pubmed/34417147
http://dx.doi.org/10.1016/S2589-7500(21)00133-3
_version_ 1784571879483244544
author Muti, Hannah Sophie
Heij, Lara Rosaline
Keller, Gisela
Kohlruss, Meike
Langer, Rupert
Dislich, Bastian
Cheong, Jae-Ho
Kim, Young-Woo
Kim, Hyunki
Kook, Myeong-Cherl
Cunningham, David
Allum, William H
Langley, Ruth E
Nankivell, Matthew G
Quirke, Philip
Hayden, Jeremy D
West, Nicholas P
Irvine, Andrew J
Yoshikawa, Takaki
Oshima, Takashi
Huss, Ralf
Grosser, Bianca
Roviello, Franco
d'Ignazio, Alessia
Quaas, Alexander
Alakus, Hakan
Tan, Xiuxiang
Pearson, Alexander T
Luedde, Tom
Ebert, Matthias P
Jäger, Dirk
Trautwein, Christian
Gaisa, Nadine Therese
Grabsch, Heike I
Kather, Jakob Nikolas
author_facet Muti, Hannah Sophie
Heij, Lara Rosaline
Keller, Gisela
Kohlruss, Meike
Langer, Rupert
Dislich, Bastian
Cheong, Jae-Ho
Kim, Young-Woo
Kim, Hyunki
Kook, Myeong-Cherl
Cunningham, David
Allum, William H
Langley, Ruth E
Nankivell, Matthew G
Quirke, Philip
Hayden, Jeremy D
West, Nicholas P
Irvine, Andrew J
Yoshikawa, Takaki
Oshima, Takashi
Huss, Ralf
Grosser, Bianca
Roviello, Franco
d'Ignazio, Alessia
Quaas, Alexander
Alakus, Hakan
Tan, Xiuxiang
Pearson, Alexander T
Luedde, Tom
Ebert, Matthias P
Jäger, Dirk
Trautwein, Christian
Gaisa, Nadine Therese
Grabsch, Heike I
Kather, Jakob Nikolas
author_sort Muti, Hannah Sophie
collection PubMed
description BACKGROUND: Response to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning-based classifiers to detect microsatellite instability and EBV status from routine histology slides. METHODS: In this retrospective, multicentre study, we collected tissue samples from ten cohorts of patients with gastric cancer from seven countries (South Korea, Switzerland, Japan, Italy, Germany, the UK and the USA). We trained a deep learning-based classifier to detect microsatellite instability and EBV positivity from digitised, haematoxylin and eosin stained resection slides without annotating tumour containing regions. The performance of the classifier was assessed by within-cohort cross-validation in all ten cohorts and by external validation, for which we split the cohorts into a five-cohort training dataset and a five-cohort test dataset. We measured the area under the receiver operating curve (AUROC) for detection of microsatellite instability and EBV status. Microsatellite instability and EBV status were determined to be detectable if the lower bound of the 95% CI for the AUROC was above 0·5. FINDINGS: Across the ten cohorts, our analysis included 2823 patients with known microsatellite instability status and 2685 patients with known EBV status. In the within-cohort cross-validation, the deep learning-based classifier could detect microsatellite instability status in nine of ten cohorts, with AUROCs ranging from 0·597 (95% CI 0·522–0·737) to 0·836 (0·795–0·880) and EBV status in five of eight cohorts, with AUROCs ranging from 0·819 (0·752–0·841) to 0·897 (0·513–0·966). Training a classifier on the pooled training dataset and testing it on the five remaining cohorts resulted in high classification performance with AUROCs ranging from 0·723 (95% CI 0·676–0·794) to 0·863 (0·747–0·969) for detection of microsatellite instability and from 0·672 (0·403–0·989) to 0·859 (0·823–0·919) for detection of EBV status. INTERPRETATION: Classifiers became increasingly robust when trained on pooled cohorts. After prospective validation, this deep learning-based tissue classification system could be used as an inexpensive predictive biomarker for immunotherapy in gastric cancer. FUNDING: German Cancer Aid and German Federal Ministry of Health.
format Online
Article
Text
id pubmed-8460994
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier Ltd
record_format MEDLINE/PubMed
spelling pubmed-84609942021-09-28 Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study Muti, Hannah Sophie Heij, Lara Rosaline Keller, Gisela Kohlruss, Meike Langer, Rupert Dislich, Bastian Cheong, Jae-Ho Kim, Young-Woo Kim, Hyunki Kook, Myeong-Cherl Cunningham, David Allum, William H Langley, Ruth E Nankivell, Matthew G Quirke, Philip Hayden, Jeremy D West, Nicholas P Irvine, Andrew J Yoshikawa, Takaki Oshima, Takashi Huss, Ralf Grosser, Bianca Roviello, Franco d'Ignazio, Alessia Quaas, Alexander Alakus, Hakan Tan, Xiuxiang Pearson, Alexander T Luedde, Tom Ebert, Matthias P Jäger, Dirk Trautwein, Christian Gaisa, Nadine Therese Grabsch, Heike I Kather, Jakob Nikolas Lancet Digit Health Articles BACKGROUND: Response to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning-based classifiers to detect microsatellite instability and EBV status from routine histology slides. METHODS: In this retrospective, multicentre study, we collected tissue samples from ten cohorts of patients with gastric cancer from seven countries (South Korea, Switzerland, Japan, Italy, Germany, the UK and the USA). We trained a deep learning-based classifier to detect microsatellite instability and EBV positivity from digitised, haematoxylin and eosin stained resection slides without annotating tumour containing regions. The performance of the classifier was assessed by within-cohort cross-validation in all ten cohorts and by external validation, for which we split the cohorts into a five-cohort training dataset and a five-cohort test dataset. We measured the area under the receiver operating curve (AUROC) for detection of microsatellite instability and EBV status. Microsatellite instability and EBV status were determined to be detectable if the lower bound of the 95% CI for the AUROC was above 0·5. FINDINGS: Across the ten cohorts, our analysis included 2823 patients with known microsatellite instability status and 2685 patients with known EBV status. In the within-cohort cross-validation, the deep learning-based classifier could detect microsatellite instability status in nine of ten cohorts, with AUROCs ranging from 0·597 (95% CI 0·522–0·737) to 0·836 (0·795–0·880) and EBV status in five of eight cohorts, with AUROCs ranging from 0·819 (0·752–0·841) to 0·897 (0·513–0·966). Training a classifier on the pooled training dataset and testing it on the five remaining cohorts resulted in high classification performance with AUROCs ranging from 0·723 (95% CI 0·676–0·794) to 0·863 (0·747–0·969) for detection of microsatellite instability and from 0·672 (0·403–0·989) to 0·859 (0·823–0·919) for detection of EBV status. INTERPRETATION: Classifiers became increasingly robust when trained on pooled cohorts. After prospective validation, this deep learning-based tissue classification system could be used as an inexpensive predictive biomarker for immunotherapy in gastric cancer. FUNDING: German Cancer Aid and German Federal Ministry of Health. Elsevier Ltd 2021-08-17 /pmc/articles/PMC8460994/ /pubmed/34417147 http://dx.doi.org/10.1016/S2589-7500(21)00133-3 Text en © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Articles
Muti, Hannah Sophie
Heij, Lara Rosaline
Keller, Gisela
Kohlruss, Meike
Langer, Rupert
Dislich, Bastian
Cheong, Jae-Ho
Kim, Young-Woo
Kim, Hyunki
Kook, Myeong-Cherl
Cunningham, David
Allum, William H
Langley, Ruth E
Nankivell, Matthew G
Quirke, Philip
Hayden, Jeremy D
West, Nicholas P
Irvine, Andrew J
Yoshikawa, Takaki
Oshima, Takashi
Huss, Ralf
Grosser, Bianca
Roviello, Franco
d'Ignazio, Alessia
Quaas, Alexander
Alakus, Hakan
Tan, Xiuxiang
Pearson, Alexander T
Luedde, Tom
Ebert, Matthias P
Jäger, Dirk
Trautwein, Christian
Gaisa, Nadine Therese
Grabsch, Heike I
Kather, Jakob Nikolas
Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study
title Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study
title_full Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study
title_fullStr Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study
title_full_unstemmed Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study
title_short Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study
title_sort development and validation of deep learning classifiers to detect epstein-barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460994/
https://www.ncbi.nlm.nih.gov/pubmed/34417147
http://dx.doi.org/10.1016/S2589-7500(21)00133-3
work_keys_str_mv AT mutihannahsophie developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT heijlararosaline developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT kellergisela developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT kohlrussmeike developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT langerrupert developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT dislichbastian developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT cheongjaeho developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT kimyoungwoo developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT kimhyunki developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT kookmyeongcherl developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT cunninghamdavid developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT allumwilliamh developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT langleyruthe developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT nankivellmatthewg developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT quirkephilip developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT haydenjeremyd developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT westnicholasp developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT irvineandrewj developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT yoshikawatakaki developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT oshimatakashi developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT hussralf developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT grosserbianca developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT roviellofranco developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT dignazioalessia developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT quaasalexander developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT alakushakan developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT tanxiuxiang developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT pearsonalexandert developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT lueddetom developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT ebertmatthiasp developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT jagerdirk developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT trautweinchristian developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT gaisanadinetherese developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT grabschheikei developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy
AT katherjakobnikolas developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy