Cargando…
Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study
BACKGROUND: Response to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning-based classifiers to detect microsatellite instability and EBV statu...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460994/ https://www.ncbi.nlm.nih.gov/pubmed/34417147 http://dx.doi.org/10.1016/S2589-7500(21)00133-3 |
_version_ | 1784571879483244544 |
---|---|
author | Muti, Hannah Sophie Heij, Lara Rosaline Keller, Gisela Kohlruss, Meike Langer, Rupert Dislich, Bastian Cheong, Jae-Ho Kim, Young-Woo Kim, Hyunki Kook, Myeong-Cherl Cunningham, David Allum, William H Langley, Ruth E Nankivell, Matthew G Quirke, Philip Hayden, Jeremy D West, Nicholas P Irvine, Andrew J Yoshikawa, Takaki Oshima, Takashi Huss, Ralf Grosser, Bianca Roviello, Franco d'Ignazio, Alessia Quaas, Alexander Alakus, Hakan Tan, Xiuxiang Pearson, Alexander T Luedde, Tom Ebert, Matthias P Jäger, Dirk Trautwein, Christian Gaisa, Nadine Therese Grabsch, Heike I Kather, Jakob Nikolas |
author_facet | Muti, Hannah Sophie Heij, Lara Rosaline Keller, Gisela Kohlruss, Meike Langer, Rupert Dislich, Bastian Cheong, Jae-Ho Kim, Young-Woo Kim, Hyunki Kook, Myeong-Cherl Cunningham, David Allum, William H Langley, Ruth E Nankivell, Matthew G Quirke, Philip Hayden, Jeremy D West, Nicholas P Irvine, Andrew J Yoshikawa, Takaki Oshima, Takashi Huss, Ralf Grosser, Bianca Roviello, Franco d'Ignazio, Alessia Quaas, Alexander Alakus, Hakan Tan, Xiuxiang Pearson, Alexander T Luedde, Tom Ebert, Matthias P Jäger, Dirk Trautwein, Christian Gaisa, Nadine Therese Grabsch, Heike I Kather, Jakob Nikolas |
author_sort | Muti, Hannah Sophie |
collection | PubMed |
description | BACKGROUND: Response to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning-based classifiers to detect microsatellite instability and EBV status from routine histology slides. METHODS: In this retrospective, multicentre study, we collected tissue samples from ten cohorts of patients with gastric cancer from seven countries (South Korea, Switzerland, Japan, Italy, Germany, the UK and the USA). We trained a deep learning-based classifier to detect microsatellite instability and EBV positivity from digitised, haematoxylin and eosin stained resection slides without annotating tumour containing regions. The performance of the classifier was assessed by within-cohort cross-validation in all ten cohorts and by external validation, for which we split the cohorts into a five-cohort training dataset and a five-cohort test dataset. We measured the area under the receiver operating curve (AUROC) for detection of microsatellite instability and EBV status. Microsatellite instability and EBV status were determined to be detectable if the lower bound of the 95% CI for the AUROC was above 0·5. FINDINGS: Across the ten cohorts, our analysis included 2823 patients with known microsatellite instability status and 2685 patients with known EBV status. In the within-cohort cross-validation, the deep learning-based classifier could detect microsatellite instability status in nine of ten cohorts, with AUROCs ranging from 0·597 (95% CI 0·522–0·737) to 0·836 (0·795–0·880) and EBV status in five of eight cohorts, with AUROCs ranging from 0·819 (0·752–0·841) to 0·897 (0·513–0·966). Training a classifier on the pooled training dataset and testing it on the five remaining cohorts resulted in high classification performance with AUROCs ranging from 0·723 (95% CI 0·676–0·794) to 0·863 (0·747–0·969) for detection of microsatellite instability and from 0·672 (0·403–0·989) to 0·859 (0·823–0·919) for detection of EBV status. INTERPRETATION: Classifiers became increasingly robust when trained on pooled cohorts. After prospective validation, this deep learning-based tissue classification system could be used as an inexpensive predictive biomarker for immunotherapy in gastric cancer. FUNDING: German Cancer Aid and German Federal Ministry of Health. |
format | Online Article Text |
id | pubmed-8460994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-84609942021-09-28 Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study Muti, Hannah Sophie Heij, Lara Rosaline Keller, Gisela Kohlruss, Meike Langer, Rupert Dislich, Bastian Cheong, Jae-Ho Kim, Young-Woo Kim, Hyunki Kook, Myeong-Cherl Cunningham, David Allum, William H Langley, Ruth E Nankivell, Matthew G Quirke, Philip Hayden, Jeremy D West, Nicholas P Irvine, Andrew J Yoshikawa, Takaki Oshima, Takashi Huss, Ralf Grosser, Bianca Roviello, Franco d'Ignazio, Alessia Quaas, Alexander Alakus, Hakan Tan, Xiuxiang Pearson, Alexander T Luedde, Tom Ebert, Matthias P Jäger, Dirk Trautwein, Christian Gaisa, Nadine Therese Grabsch, Heike I Kather, Jakob Nikolas Lancet Digit Health Articles BACKGROUND: Response to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning-based classifiers to detect microsatellite instability and EBV status from routine histology slides. METHODS: In this retrospective, multicentre study, we collected tissue samples from ten cohorts of patients with gastric cancer from seven countries (South Korea, Switzerland, Japan, Italy, Germany, the UK and the USA). We trained a deep learning-based classifier to detect microsatellite instability and EBV positivity from digitised, haematoxylin and eosin stained resection slides without annotating tumour containing regions. The performance of the classifier was assessed by within-cohort cross-validation in all ten cohorts and by external validation, for which we split the cohorts into a five-cohort training dataset and a five-cohort test dataset. We measured the area under the receiver operating curve (AUROC) for detection of microsatellite instability and EBV status. Microsatellite instability and EBV status were determined to be detectable if the lower bound of the 95% CI for the AUROC was above 0·5. FINDINGS: Across the ten cohorts, our analysis included 2823 patients with known microsatellite instability status and 2685 patients with known EBV status. In the within-cohort cross-validation, the deep learning-based classifier could detect microsatellite instability status in nine of ten cohorts, with AUROCs ranging from 0·597 (95% CI 0·522–0·737) to 0·836 (0·795–0·880) and EBV status in five of eight cohorts, with AUROCs ranging from 0·819 (0·752–0·841) to 0·897 (0·513–0·966). Training a classifier on the pooled training dataset and testing it on the five remaining cohorts resulted in high classification performance with AUROCs ranging from 0·723 (95% CI 0·676–0·794) to 0·863 (0·747–0·969) for detection of microsatellite instability and from 0·672 (0·403–0·989) to 0·859 (0·823–0·919) for detection of EBV status. INTERPRETATION: Classifiers became increasingly robust when trained on pooled cohorts. After prospective validation, this deep learning-based tissue classification system could be used as an inexpensive predictive biomarker for immunotherapy in gastric cancer. FUNDING: German Cancer Aid and German Federal Ministry of Health. Elsevier Ltd 2021-08-17 /pmc/articles/PMC8460994/ /pubmed/34417147 http://dx.doi.org/10.1016/S2589-7500(21)00133-3 Text en © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Articles Muti, Hannah Sophie Heij, Lara Rosaline Keller, Gisela Kohlruss, Meike Langer, Rupert Dislich, Bastian Cheong, Jae-Ho Kim, Young-Woo Kim, Hyunki Kook, Myeong-Cherl Cunningham, David Allum, William H Langley, Ruth E Nankivell, Matthew G Quirke, Philip Hayden, Jeremy D West, Nicholas P Irvine, Andrew J Yoshikawa, Takaki Oshima, Takashi Huss, Ralf Grosser, Bianca Roviello, Franco d'Ignazio, Alessia Quaas, Alexander Alakus, Hakan Tan, Xiuxiang Pearson, Alexander T Luedde, Tom Ebert, Matthias P Jäger, Dirk Trautwein, Christian Gaisa, Nadine Therese Grabsch, Heike I Kather, Jakob Nikolas Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study |
title | Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study |
title_full | Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study |
title_fullStr | Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study |
title_full_unstemmed | Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study |
title_short | Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study |
title_sort | development and validation of deep learning classifiers to detect epstein-barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460994/ https://www.ncbi.nlm.nih.gov/pubmed/34417147 http://dx.doi.org/10.1016/S2589-7500(21)00133-3 |
work_keys_str_mv | AT mutihannahsophie developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT heijlararosaline developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT kellergisela developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT kohlrussmeike developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT langerrupert developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT dislichbastian developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT cheongjaeho developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT kimyoungwoo developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT kimhyunki developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT kookmyeongcherl developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT cunninghamdavid developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT allumwilliamh developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT langleyruthe developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT nankivellmatthewg developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT quirkephilip developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT haydenjeremyd developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT westnicholasp developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT irvineandrewj developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT yoshikawatakaki developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT oshimatakashi developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT hussralf developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT grosserbianca developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT roviellofranco developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT dignazioalessia developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT quaasalexander developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT alakushakan developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT tanxiuxiang developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT pearsonalexandert developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT lueddetom developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT ebertmatthiasp developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT jagerdirk developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT trautweinchristian developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT gaisanadinetherese developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT grabschheikei developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy AT katherjakobnikolas developmentandvalidationofdeeplearningclassifierstodetectepsteinbarrvirusandmicrosatelliteinstabilitystatusingastriccanceraretrospectivemulticentrecohortstudy |