Cargando…
Deep Learning of Histopathology Images at the Single Cell Level
The tumor immune microenvironment (TIME) encompasses many heterogeneous cell types that engage in extensive crosstalk among the cancer, immune, and stromal components. The spatial organization of these different cell types in TIME could be used as biomarkers for predicting drug responses, prognosis...
Autores principales: | Lee, Kyubum, Lockhart, John H., Xie, Mengyu, Chaudhary, Ritu, Slebos, Robbert J. C., Flores, Elsa R., Chung, Christine H., Tan, Aik Choon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461055/ https://www.ncbi.nlm.nih.gov/pubmed/34568816 http://dx.doi.org/10.3389/frai.2021.754641 |
Ejemplares similares
-
AutoMorph: Automated Retinal Vascular Morphology Quantification Via a Deep Learning Pipeline
por: Zhou, Yukun, et al.
Publicado: (2022) -
Artifact Correction in Retinal Nerve Fiber Layer Thickness Maps Using Deep Learning and Its Clinical Utility in Glaucoma
por: Shi, Min, et al.
Publicado: (2023) -
Machine learning and deep learning approaches in IoT
por: Javed, Abqa, et al.
Publicado: (2023) -
Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma
por: Thiéry, Alexandre H., et al.
Publicado: (2023) -
A comprehensive review of deep learning-based single image super-resolution
por: Bashir, Syed Muhammad Arsalan, et al.
Publicado: (2021)