Cargando…

Impact of second-order network motif on online social networks

The behaviour of individual users in an online social network is a major contributing factor in determining the outcome of multiple network phenomenon. Group formation, growth of the network, information propagation, and rumour blocking are some of the many network behavioural traits that are influe...

Descripción completa

Detalles Bibliográficos
Autores principales: Sinha, Sankhamita, Bhattacharya, Subhayan, Roy, Sarbani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461152/
https://www.ncbi.nlm.nih.gov/pubmed/34584343
http://dx.doi.org/10.1007/s11227-021-04079-7
Descripción
Sumario:The behaviour of individual users in an online social network is a major contributing factor in determining the outcome of multiple network phenomenon. Group formation, growth of the network, information propagation, and rumour blocking are some of the many network behavioural traits that are influenced by the interaction patterns of the users in the network. Network motifs capture one such interaction pattern between users in online social networks (OSNs). For this work, four second-order (two-edged) network motifs have been considered, namely, message receiving pattern, message broadcasting pattern, message passing pattern, and reciprocal message pattern, to analyse user behaviour in online social networks. This work provides and utilizes a node interaction pattern-finding algorithm to identify the frequency of aforementioned second-order network motifs in six real-life online social networks (Facebook, GPlus, GNU, Twitter, Enron Email, and Wiki-vote). The frequency of network motifs participated in by a node is considered for the relative ranking of all nodes in the online social networks. The highest-rated nodes are considered seeds for information propagation. The performance of using network motifs for ranking nodes as seeds for information propagation is validated using statistical metrics Z-score, concentration, and significance profile and compared with baseline ranking methods in-degree centrality, out-degree centrality, closeness centrality, and PageRank. The comparative study shows the performance of centrality measures to be similar or better than second-order network motifs as seed nodes in information diffusion. The experimental results on finding frequencies and importance of different interaction patterns provide insights on the significance and representation of each such interaction pattern and how it varies from network to network.