Cargando…

Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model

OBJECTIVES: This study sought to develop a multiparametric MRI radiomics-based machine learning model for the preoperative prediction of clinical success for high-intensity-focused ultrasound (HIFU) ablation of uterine leiomyomas. METHODS: One hundred and thirty patients who received HIFU ablation t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Yineng, Chen, Liping, Liu, Mengqi, Wu, Jiahui, Yu, Renqiang, Lv, Fajin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461183/
https://www.ncbi.nlm.nih.gov/pubmed/34567999
http://dx.doi.org/10.3389/fonc.2021.618604
_version_ 1784571923869466624
author Zheng, Yineng
Chen, Liping
Liu, Mengqi
Wu, Jiahui
Yu, Renqiang
Lv, Fajin
author_facet Zheng, Yineng
Chen, Liping
Liu, Mengqi
Wu, Jiahui
Yu, Renqiang
Lv, Fajin
author_sort Zheng, Yineng
collection PubMed
description OBJECTIVES: This study sought to develop a multiparametric MRI radiomics-based machine learning model for the preoperative prediction of clinical success for high-intensity-focused ultrasound (HIFU) ablation of uterine leiomyomas. METHODS: One hundred and thirty patients who received HIFU ablation therapy for uterine leiomyomas were enrolled in this retrospective study. Radiomics features were extracted from T2-weighted (T2WI) image and ADC map derived from diffusion-weighted imaging (DWI). Three feature selection algorithms including least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE), and ReliefF algorithm were used to select radiomics features, respectively, which were fed into four machine learning classifiers including k-nearest neighbors (KNN), logistic regression (LR), random forest (RF), and support vector machine (SVM) for the construction of outcome prediction models before HIFU treatment. The performance, predication ability, and clinical usefulness of these models were verified and evaluated using receiver operating characteristics (ROC), calibration, and decision curve analyses. RESULTS: The radiomics analysis provided an effective preoperative prediction for HIFU ablation of uterine leiomyomas. Using SVM with ReliefF algorithm, the multiparametric MRI radiomics model showed the favorable performance with average accuracy of 0.849, sensitivity of 0.814, specificity of 0.896, positive predictive value (PPV) of 0.903, negative predictive value (NPV) of 0.823, and the area under the ROC curve (AUC) of 0.887 (95% CI = 0.848–0.939) in fivefold cross-validation, followed by RF with ReliefF. Calibration and decision curve analyses confirmed the potential of model in predication ability and clinical usefulness. CONCLUSIONS: The radiomics-based machine learning model can predict preoperatively HIFU ablation response for the patients with uterine leiomyomas and contribute to determining individual treatment strategies.
format Online
Article
Text
id pubmed-8461183
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-84611832021-09-25 Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model Zheng, Yineng Chen, Liping Liu, Mengqi Wu, Jiahui Yu, Renqiang Lv, Fajin Front Oncol Oncology OBJECTIVES: This study sought to develop a multiparametric MRI radiomics-based machine learning model for the preoperative prediction of clinical success for high-intensity-focused ultrasound (HIFU) ablation of uterine leiomyomas. METHODS: One hundred and thirty patients who received HIFU ablation therapy for uterine leiomyomas were enrolled in this retrospective study. Radiomics features were extracted from T2-weighted (T2WI) image and ADC map derived from diffusion-weighted imaging (DWI). Three feature selection algorithms including least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE), and ReliefF algorithm were used to select radiomics features, respectively, which were fed into four machine learning classifiers including k-nearest neighbors (KNN), logistic regression (LR), random forest (RF), and support vector machine (SVM) for the construction of outcome prediction models before HIFU treatment. The performance, predication ability, and clinical usefulness of these models were verified and evaluated using receiver operating characteristics (ROC), calibration, and decision curve analyses. RESULTS: The radiomics analysis provided an effective preoperative prediction for HIFU ablation of uterine leiomyomas. Using SVM with ReliefF algorithm, the multiparametric MRI radiomics model showed the favorable performance with average accuracy of 0.849, sensitivity of 0.814, specificity of 0.896, positive predictive value (PPV) of 0.903, negative predictive value (NPV) of 0.823, and the area under the ROC curve (AUC) of 0.887 (95% CI = 0.848–0.939) in fivefold cross-validation, followed by RF with ReliefF. Calibration and decision curve analyses confirmed the potential of model in predication ability and clinical usefulness. CONCLUSIONS: The radiomics-based machine learning model can predict preoperatively HIFU ablation response for the patients with uterine leiomyomas and contribute to determining individual treatment strategies. Frontiers Media S.A. 2021-09-10 /pmc/articles/PMC8461183/ /pubmed/34567999 http://dx.doi.org/10.3389/fonc.2021.618604 Text en Copyright © 2021 Zheng, Chen, Liu, Wu, Yu and Lv https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Zheng, Yineng
Chen, Liping
Liu, Mengqi
Wu, Jiahui
Yu, Renqiang
Lv, Fajin
Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model
title Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model
title_full Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model
title_fullStr Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model
title_full_unstemmed Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model
title_short Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model
title_sort prediction of clinical outcome for high-intensity focused ultrasound ablation of uterine leiomyomas using multiparametric mri radiomics-based machine leaning model
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461183/
https://www.ncbi.nlm.nih.gov/pubmed/34567999
http://dx.doi.org/10.3389/fonc.2021.618604
work_keys_str_mv AT zhengyineng predictionofclinicaloutcomeforhighintensityfocusedultrasoundablationofuterineleiomyomasusingmultiparametricmriradiomicsbasedmachineleaningmodel
AT chenliping predictionofclinicaloutcomeforhighintensityfocusedultrasoundablationofuterineleiomyomasusingmultiparametricmriradiomicsbasedmachineleaningmodel
AT liumengqi predictionofclinicaloutcomeforhighintensityfocusedultrasoundablationofuterineleiomyomasusingmultiparametricmriradiomicsbasedmachineleaningmodel
AT wujiahui predictionofclinicaloutcomeforhighintensityfocusedultrasoundablationofuterineleiomyomasusingmultiparametricmriradiomicsbasedmachineleaningmodel
AT yurenqiang predictionofclinicaloutcomeforhighintensityfocusedultrasoundablationofuterineleiomyomasusingmultiparametricmriradiomicsbasedmachineleaningmodel
AT lvfajin predictionofclinicaloutcomeforhighintensityfocusedultrasoundablationofuterineleiomyomasusingmultiparametricmriradiomicsbasedmachineleaningmodel