Cargando…
Perioperative amino acid infusion reestablishes muscle net balance during total hip arthroplasty
Surgery and anesthesia induce a catabolic response that leads to skeletal muscle protein loss. Previous investigations have observed positive effects of perioperative nutrition. Furthermore, the benefits of exogenous amino acids on muscle protein kinetics are well established. However, no investigat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461212/ https://www.ncbi.nlm.nih.gov/pubmed/34558214 http://dx.doi.org/10.14814/phy2.15055 |
Sumario: | Surgery and anesthesia induce a catabolic response that leads to skeletal muscle protein loss. Previous investigations have observed positive effects of perioperative nutrition. Furthermore, the benefits of exogenous amino acids on muscle protein kinetics are well established. However, no investigation has focused on muscle protein kinetics with and without perioperative amino acid infusion. Thus, we aimed to assess the effect of perioperative amino acid (AA) infusion on muscle protein balance in individuals undergoing elective total hip arthroplasty (THA). Elective THA patients were randomized to undergo a metabolic study prior to surgery (n = 5; control [CON]), intraoperative AA infusion (n = 9), or no AA (n = 13; standard of care [SC]). The CON group was studied prior to surgery to provide nonoperative/non‐anesthesia muscle protein kinetic reference values. The bolus infusion method with (13)C(6)‐phenylalanine injected at time 0, and [(15)N]‐phenylalanine 30 min later was used to calculate muscle protein synthesis (MPS), protein breakdown (MPB), and net balance (MPS−MPB). Perioperative AA significantly improved muscle net balance as compared to SC (−0.005 ± 0.018%/h vs. −0.052 ± 0.011%/h) but not CON (0.003 ± 0.013%/h). The AA infusion significantly increased muscle net balance via a significant increase in MPS (AA = 0.062 ± 0.007%/h; SC = 0.037 ± 0.004%/h; CON = 0.072% ± 0.005%/h), and a nonsignificant attenuation of MPB (AA = 0.067 ± 0.012%/h; SC = 0.089 ± 0.014%/h; CON = 0.075 ± 0.011%/h). Our data support the use of perioperative AA infusion during elective THA as pragmatic strategy to offset the loss of surgically induced skeletal muscle protein. |
---|