Cargando…
Anticancer roles of let-7f-1-3p in non-small cell lung cancer via direct targeting of integrin β1
Lung cancer is one of the most common types of cancer, with the highest mortality rate worldwide. MicroRNAs play notable roles in the chemotherapeutic effects of anticancer drugs. The present study used reverse transcription-quantitative PCR, western blotting and cell migration and invasion assays t...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461611/ https://www.ncbi.nlm.nih.gov/pubmed/34630660 http://dx.doi.org/10.3892/etm.2021.10740 |
Sumario: | Lung cancer is one of the most common types of cancer, with the highest mortality rate worldwide. MicroRNAs play notable roles in the chemotherapeutic effects of anticancer drugs. The present study used reverse transcription-quantitative PCR, western blotting and cell migration and invasion assays to reveal the role of let-7f-1-3p in non-small cell lung cancer (NSCLC) and explore the effect of let-7f-1-3p on doxorubicin (DOX) treatment. It was demonstrated that the levels of let-7f-1-3p in carcinoma tissues were lower compared with those in paracarcinoma tissues. Thus, let-7f-1-3p may act as a suppressor gene. The present study also explored the role of let-7f-1-3p in A549 and NCI-H1975 cells. Results revealed that let-7f-1-3p could inhibit the viability, migration and invasion of NSCLC cells and induce their apoptosis. Integrin β1 acted as a target gene regulated by let-7f-1-3p. This suggested that let-7f-1-3p could enhance DOX-inhibited cell viability, migration and invasion in vitro. Overall, the present study demonstrated that let-7f-1-3p may act as a target for drug design and lung cancer therapy. |
---|