Cargando…

circ-ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR-582-5p/ERO1A signaling axis

Circular RNAs (circ) have been reported to serve crucial roles in the regulation of cancer occurrence and development. The present study aimed to investigate the role of circ-acetyl-CoA carboxylase α (ACACA) in the progression of cervical cancer (CC). The expression levels of circ-ACACA in several C...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Dandan, Li, Cuimei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461755/
https://www.ncbi.nlm.nih.gov/pubmed/34584570
http://dx.doi.org/10.3892/ol.2021.13056
_version_ 1784572059184005120
author Huang, Dandan
Li, Cuimei
author_facet Huang, Dandan
Li, Cuimei
author_sort Huang, Dandan
collection PubMed
description Circular RNAs (circ) have been reported to serve crucial roles in the regulation of cancer occurrence and development. The present study aimed to investigate the role of circ-acetyl-CoA carboxylase α (ACACA) in the progression of cervical cancer (CC). The expression levels of circ-ACACA in several CC cell lines were first determined using reverse transcription-quantitative PCR. circ-ACACA expression was subsequently knocked down to evaluate its effects on the viability, proliferation, apoptosis, invasion and migration of CC cells using MTT, colony formation, TUNEL, transwell and wound healing assays, respectively. (13)C-labeling of intracellular metabolites and analysis of glucose consumption and lactate production were performed to determine the levels of glycolysis. In addition, the expression levels of endoplasmic reticulum oxidoreductase 1α (ERO1α; ERO1A) and glycolysis-related proteins were analyzed using western blotting. The binding interactions among circ-ACACA, microRNA (miR)-582-5p and ERO1A were validated using dual-luciferase reporter assays. Subsequently, rescue experiments were performed to determine the potential underlying mechanism by which circ-ACACA affected CC cell functions. The results revealed that circ-ACACA expression was significantly upregulated in CC cells and silencing of circ-ACACA significantly reduced the proliferation, invasion and migration, and promoted the apoptosis of CC cells. Knockdown of circ-ACACA markedly inhibited glycolysis in CC cells. However, the effects of silencing of circ-ACACA on CC cells were reversed following transfection with the miR-582-5p inhibitor or pcDNA3.1-ERO1A overexpression plasmid. In conclusion, to the best of our knowledge, the present study was the first to investigate the role of circ-ACACA in CC progression. The results suggested that circ-ACACA may promote CC tumorigenesis and glycolysis by targeting the miR-582-5p/ERO1A signaling axis. Therefore, circ-ACACA may be a promising biomarker for CC diagnosis and treatment.
format Online
Article
Text
id pubmed-8461755
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-84617552021-09-27 circ-ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR-582-5p/ERO1A signaling axis Huang, Dandan Li, Cuimei Oncol Lett Articles Circular RNAs (circ) have been reported to serve crucial roles in the regulation of cancer occurrence and development. The present study aimed to investigate the role of circ-acetyl-CoA carboxylase α (ACACA) in the progression of cervical cancer (CC). The expression levels of circ-ACACA in several CC cell lines were first determined using reverse transcription-quantitative PCR. circ-ACACA expression was subsequently knocked down to evaluate its effects on the viability, proliferation, apoptosis, invasion and migration of CC cells using MTT, colony formation, TUNEL, transwell and wound healing assays, respectively. (13)C-labeling of intracellular metabolites and analysis of glucose consumption and lactate production were performed to determine the levels of glycolysis. In addition, the expression levels of endoplasmic reticulum oxidoreductase 1α (ERO1α; ERO1A) and glycolysis-related proteins were analyzed using western blotting. The binding interactions among circ-ACACA, microRNA (miR)-582-5p and ERO1A were validated using dual-luciferase reporter assays. Subsequently, rescue experiments were performed to determine the potential underlying mechanism by which circ-ACACA affected CC cell functions. The results revealed that circ-ACACA expression was significantly upregulated in CC cells and silencing of circ-ACACA significantly reduced the proliferation, invasion and migration, and promoted the apoptosis of CC cells. Knockdown of circ-ACACA markedly inhibited glycolysis in CC cells. However, the effects of silencing of circ-ACACA on CC cells were reversed following transfection with the miR-582-5p inhibitor or pcDNA3.1-ERO1A overexpression plasmid. In conclusion, to the best of our knowledge, the present study was the first to investigate the role of circ-ACACA in CC progression. The results suggested that circ-ACACA may promote CC tumorigenesis and glycolysis by targeting the miR-582-5p/ERO1A signaling axis. Therefore, circ-ACACA may be a promising biomarker for CC diagnosis and treatment. D.A. Spandidos 2021-11 2021-09-17 /pmc/articles/PMC8461755/ /pubmed/34584570 http://dx.doi.org/10.3892/ol.2021.13056 Text en Copyright: © Huang et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Huang, Dandan
Li, Cuimei
circ-ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR-582-5p/ERO1A signaling axis
title circ-ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR-582-5p/ERO1A signaling axis
title_full circ-ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR-582-5p/ERO1A signaling axis
title_fullStr circ-ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR-582-5p/ERO1A signaling axis
title_full_unstemmed circ-ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR-582-5p/ERO1A signaling axis
title_short circ-ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR-582-5p/ERO1A signaling axis
title_sort circ-acaca promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the mir-582-5p/ero1a signaling axis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461755/
https://www.ncbi.nlm.nih.gov/pubmed/34584570
http://dx.doi.org/10.3892/ol.2021.13056
work_keys_str_mv AT huangdandan circacacapromotesproliferationinvasionmigrationandglycolysisofcervicalcancercellsbytargetingthemir5825pero1asignalingaxis
AT licuimei circacacapromotesproliferationinvasionmigrationandglycolysisofcervicalcancercellsbytargetingthemir5825pero1asignalingaxis