Cargando…
A 2D–3D hybrid convolutional neural network for lung lobe auto-segmentation on standard slice thickness computed tomography of patients receiving radiotherapy
BACKGROUND: Accurate segmentation of lung lobe on routine computed tomography (CT) images of locally advanced stage lung cancer patients undergoing radiotherapy can help radiation oncologists to implement lobar-level treatment planning, dose assessment and efficacy prediction. We aim to establish a...
Autores principales: | Gu, Hengle, Gan, Wutian, Zhang, Chenchen, Feng, Aihui, Wang, Hao, Huang, Ying, Chen, Hua, Shao, Yan, Duan, Yanhua, Xu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461922/ https://www.ncbi.nlm.nih.gov/pubmed/34556141 http://dx.doi.org/10.1186/s12938-021-00932-1 |
Ejemplares similares
-
On the optimal number of dose‐limiting shells in the SBRT auto‐planning design for peripheral lung cancer
por: Duan, Yanhua, et al.
Publicado: (2020) -
Geometric and Dosimetric Changes in Tumor and Lung Tissue During Radiotherapy for Lung Cancer With Atelectasis
por: Chen, Hua, et al.
Publicado: (2021) -
A novel specific grading standard study of auto-segmentation of organs at risk in thorax: subjective–objective-combined grading standard
por: Ying, Yanchen, et al.
Publicado: (2021) -
A novel lung-avoidance planning strategy based on 4DCT ventilation imaging and CT density characteristics for stage III non-small-cell lung cancer patients
por: Feng, AiHui, et al.
Publicado: (2021) -
Regression models for predicting physical and EQD(2) plan parameters of two methods of hybrid planning for stage III NSCLC
por: Wang, Hao, et al.
Publicado: (2021)