Cargando…

IFITM1, CD10, SMA, and h-caldesmon as a helpful combination in differential diagnosis between endometrial stromal tumor and cellular leiomyoma

BACKGROUND: The differential diagnosis of endometrial stromal tumor (EST) and uterine cellular leiomyoma (CL) remains a challenge in clinical practice, especially low grade endometrial stromal sarcoma (ESS) and CL, suggesting the need for novel immunomarkers panels for differential diagnosis. Interf...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Weilin, Cui, Mei, Zhang, Ruiqi, Shen, Xihua, Xiong, Xin, Ji, Xinhua, Tao, Lin, Jia, Wei, Pang, Lijuan, Sun, Zhenzhu, Wang, Chun, Zou, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461929/
https://www.ncbi.nlm.nih.gov/pubmed/34556086
http://dx.doi.org/10.1186/s12885-021-08781-w
Descripción
Sumario:BACKGROUND: The differential diagnosis of endometrial stromal tumor (EST) and uterine cellular leiomyoma (CL) remains a challenge in clinical practice, especially low grade endometrial stromal sarcoma (ESS) and CL, suggesting the need for novel immunomarkers panels for differential diagnosis. Interferon-induced transmembrane protein 1 (IFITM1) is a novel immunomarker for endometrial stromal cells, h-caldesmon is an immunomarker for smooth muscle cells and has a higher specificity than smooth muscle actin (SMA). So this study aimed to evaluate whether IFITM1, cluster of differentiation 10(CD10), SMA, and h-caldesmon are useful biomarker combinations for the differential diagnosis of EST and CL. METHODS: Tissue microarrays were used to detect IFITM1, CD10, SMA, and h-caldesmon immunohistochemical staining in 30 EST and 33 CL cases. RESULTS: The expressions of IFITM1 and CD10 were high in EST (86.7 and 63.3%, respectively) but low in CL (18.2 and 21.2%), whereas those of h-caldesmon and SMA were high in CL (87.9 and 100%) and low in EST (6.9 and 40%). In diagnosing EST, IFITM1 shows better sensitivity and specificity (86.7 and 81.8%, respectively) than CD10 (63.3 and 78.8%). The specificity of h-caldesmon in diagnosing CL was significantly higher (93.1%) than that of SMA (60%). When all four antibodies were combined for the differential diagnosis, the area-under-the-curve (AUC) predictive value was 0.995. The best combination for diagnosing EST was IFITM1 (+) or CD10 (+) and h-caldesmon (−) (sensitivity 86.7%, specificity 93.9%). CONCLUSION: The best combination for diagnosing CL were h-caldesmon (+) and SMA (+) (sensitivity 87.9%, specificity 100%). IFITM1, CD10, SMA, and h-caldesmon are a good combination for the differential diagnosis of EST and CL.