Cargando…
Consecutive Serial Non-Contrast CT Scan-Based Deep Learning Model Facilitates the Prediction of Tumor Invasiveness of Ground-Glass Nodules
INTRODUCTION: Tumors are continuously evolving biological systems which can be monitored by medical imaging. Previous studies only focus on single timepoint images, whether the performance could be further improved by using serial noncontrast CT imaging obtained during nodule follow-up management re...
Autores principales: | Xu, Yao, Li, Yu, Yin, Hongkun, Tang, Wen, Fan, Guohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461974/ https://www.ncbi.nlm.nih.gov/pubmed/34568054 http://dx.doi.org/10.3389/fonc.2021.725599 |
Ejemplares similares
-
Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan
por: Xia, Xianwu, et al.
Publicado: (2020) -
Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma
por: Xu, Fangyi, et al.
Publicado: (2020) -
Dual-energy CT-based radiomics for predicting invasiveness of lung adenocarcinoma appearing as ground-glass nodules
por: Zheng, Yuting, et al.
Publicado: (2023) -
Corrigendum: Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma
por: Xu, Fangyi, et al.
Publicado: (2020) -
The Growth Trend Predictions in Pulmonary Ground Glass Nodules Based on Radiomic CT Features
por: Gao, Chen, et al.
Publicado: (2020)