Cargando…

Does lake eutrophication support biological invasions in rivers? A study on Dreissena polymorpha (Bivalvia) in lake–river ecotones

The zebra mussel (Dreissena polymorpha) has all traits required to effectively colonize the aquatic environment and consequently reduce the diversity of native bivalves. We hypothesized that the zebra mussel chooses lake outlets characterized by medium current velocity and good food conditions. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Czerniawski, Robert, Krepski, Tomasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462168/
https://www.ncbi.nlm.nih.gov/pubmed/34594531
http://dx.doi.org/10.1002/ece3.8013
Descripción
Sumario:The zebra mussel (Dreissena polymorpha) has all traits required to effectively colonize the aquatic environment and consequently reduce the diversity of native bivalves. We hypothesized that the zebra mussel chooses lake outlets characterized by medium current velocity and good food conditions. Here, we analyzed differences between bivalve abundances in lake outlets with varying environmental conditions such as the Carlson Index (trophy status), depth, width, current velocity, bed vegetation coverage, and type of bottom substrate. The results showed that the zebra mussel inhabits outlets that provide food (high trophy outlets) and have a mineral bed and a medium current velocity (ca. 0.2–0.3 m/s). The following main factors seem to be favorable for colonizing such outlets: (1) easy access to high amounts of food due to the increased density of the suspension drifting from the lake and (2) easy transport of the zebra mussel larvae from the lake to the downstream. The zebra mussel larvae drifting with the current may colonize the downstream. An increase in lake trophy may indirectly cause an increase in biological invasions in rivers.