Cargando…
Stromal Galectin-1 Promotes Colorectal Cancer Cancer-Initiating Cell Features and Disease Dissemination Through SOX9 and β-Catenin: Development of Niche-Based Biomarkers
Over 90% of colorectal cancer (CRC) patients have mutations in the Wnt/β-catenin pathway, making the development of biomarkers difficult based on this critical oncogenic pathway. Recent studies demonstrate that CRC tumor niche-stromal cells can activate β-catenin in cancer-initiating cells (CICs), l...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462299/ https://www.ncbi.nlm.nih.gov/pubmed/34568045 http://dx.doi.org/10.3389/fonc.2021.716055 |
_version_ | 1784572178520342528 |
---|---|
author | Peng, Kai-Yen Jiang, Shih-Sheng Lee, Yu-Wei Tsai, Fang-Yu Chang, Chia-Chi Chen, Li-Tzong Yen, B. Linju |
author_facet | Peng, Kai-Yen Jiang, Shih-Sheng Lee, Yu-Wei Tsai, Fang-Yu Chang, Chia-Chi Chen, Li-Tzong Yen, B. Linju |
author_sort | Peng, Kai-Yen |
collection | PubMed |
description | Over 90% of colorectal cancer (CRC) patients have mutations in the Wnt/β-catenin pathway, making the development of biomarkers difficult based on this critical oncogenic pathway. Recent studies demonstrate that CRC tumor niche-stromal cells can activate β-catenin in cancer-initiating cells (CICs), leading to disease progression. We therefore sought to elucidate the molecular interactions between stromal and CRC cells for the development of prognostically relevant biomarkers. Assessment of CIC induction and β-catenin activation in CRC cells with two human fibroblast cell-conditioned medium (CM) was performed with subsequent mass spectrometry (MS) analysis to identify the potential paracrine factors. In vitro assessment with the identified factor and in vivo validation using two mouse models of disease dissemination and metastasis was performed. Prediction of additional molecular players with Ingenuity pathway analysis was performed, with subsequent in vitro and translational validation using human CRC tissue microarray and multiple transcriptome databases for analysis. We found that fibroblast-CM significantly enhanced multiple CIC properties including sphere formation, β-catenin activation, and drug resistance in CRC cells. MS identified galectin-1 (Gal-1) to be the secreted factor and Gal-1 alone was sufficient to induce multiple CIC properties in vitro and disease progression in both mouse models. IPA predicted SOX9 to be involved in the Gal-1/β-catenin interactions, which was validated in vitro, with Gal-1 and/or SOX9—particularly Gal-1(high)/SOX9(high) samples—significantly correlating with multiple aspects of clinical disease progression. Stromal-secreted Gal-1 promotes CIC-features and disease dissemination in CRC through SOX9 and β-catenin, with Gal-1 and SOX9 having a strong clinical prognostic value. |
format | Online Article Text |
id | pubmed-8462299 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84622992021-09-25 Stromal Galectin-1 Promotes Colorectal Cancer Cancer-Initiating Cell Features and Disease Dissemination Through SOX9 and β-Catenin: Development of Niche-Based Biomarkers Peng, Kai-Yen Jiang, Shih-Sheng Lee, Yu-Wei Tsai, Fang-Yu Chang, Chia-Chi Chen, Li-Tzong Yen, B. Linju Front Oncol Oncology Over 90% of colorectal cancer (CRC) patients have mutations in the Wnt/β-catenin pathway, making the development of biomarkers difficult based on this critical oncogenic pathway. Recent studies demonstrate that CRC tumor niche-stromal cells can activate β-catenin in cancer-initiating cells (CICs), leading to disease progression. We therefore sought to elucidate the molecular interactions between stromal and CRC cells for the development of prognostically relevant biomarkers. Assessment of CIC induction and β-catenin activation in CRC cells with two human fibroblast cell-conditioned medium (CM) was performed with subsequent mass spectrometry (MS) analysis to identify the potential paracrine factors. In vitro assessment with the identified factor and in vivo validation using two mouse models of disease dissemination and metastasis was performed. Prediction of additional molecular players with Ingenuity pathway analysis was performed, with subsequent in vitro and translational validation using human CRC tissue microarray and multiple transcriptome databases for analysis. We found that fibroblast-CM significantly enhanced multiple CIC properties including sphere formation, β-catenin activation, and drug resistance in CRC cells. MS identified galectin-1 (Gal-1) to be the secreted factor and Gal-1 alone was sufficient to induce multiple CIC properties in vitro and disease progression in both mouse models. IPA predicted SOX9 to be involved in the Gal-1/β-catenin interactions, which was validated in vitro, with Gal-1 and/or SOX9—particularly Gal-1(high)/SOX9(high) samples—significantly correlating with multiple aspects of clinical disease progression. Stromal-secreted Gal-1 promotes CIC-features and disease dissemination in CRC through SOX9 and β-catenin, with Gal-1 and SOX9 having a strong clinical prognostic value. Frontiers Media S.A. 2021-09-10 /pmc/articles/PMC8462299/ /pubmed/34568045 http://dx.doi.org/10.3389/fonc.2021.716055 Text en Copyright © 2021 Peng, Jiang, Lee, Tsai, Chang, Chen and Yen https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Peng, Kai-Yen Jiang, Shih-Sheng Lee, Yu-Wei Tsai, Fang-Yu Chang, Chia-Chi Chen, Li-Tzong Yen, B. Linju Stromal Galectin-1 Promotes Colorectal Cancer Cancer-Initiating Cell Features and Disease Dissemination Through SOX9 and β-Catenin: Development of Niche-Based Biomarkers |
title | Stromal Galectin-1 Promotes Colorectal Cancer Cancer-Initiating Cell Features and Disease Dissemination Through SOX9 and β-Catenin: Development of Niche-Based Biomarkers |
title_full | Stromal Galectin-1 Promotes Colorectal Cancer Cancer-Initiating Cell Features and Disease Dissemination Through SOX9 and β-Catenin: Development of Niche-Based Biomarkers |
title_fullStr | Stromal Galectin-1 Promotes Colorectal Cancer Cancer-Initiating Cell Features and Disease Dissemination Through SOX9 and β-Catenin: Development of Niche-Based Biomarkers |
title_full_unstemmed | Stromal Galectin-1 Promotes Colorectal Cancer Cancer-Initiating Cell Features and Disease Dissemination Through SOX9 and β-Catenin: Development of Niche-Based Biomarkers |
title_short | Stromal Galectin-1 Promotes Colorectal Cancer Cancer-Initiating Cell Features and Disease Dissemination Through SOX9 and β-Catenin: Development of Niche-Based Biomarkers |
title_sort | stromal galectin-1 promotes colorectal cancer cancer-initiating cell features and disease dissemination through sox9 and β-catenin: development of niche-based biomarkers |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462299/ https://www.ncbi.nlm.nih.gov/pubmed/34568045 http://dx.doi.org/10.3389/fonc.2021.716055 |
work_keys_str_mv | AT pengkaiyen stromalgalectin1promotescolorectalcancercancerinitiatingcellfeaturesanddiseasedisseminationthroughsox9andbcatenindevelopmentofnichebasedbiomarkers AT jiangshihsheng stromalgalectin1promotescolorectalcancercancerinitiatingcellfeaturesanddiseasedisseminationthroughsox9andbcatenindevelopmentofnichebasedbiomarkers AT leeyuwei stromalgalectin1promotescolorectalcancercancerinitiatingcellfeaturesanddiseasedisseminationthroughsox9andbcatenindevelopmentofnichebasedbiomarkers AT tsaifangyu stromalgalectin1promotescolorectalcancercancerinitiatingcellfeaturesanddiseasedisseminationthroughsox9andbcatenindevelopmentofnichebasedbiomarkers AT changchiachi stromalgalectin1promotescolorectalcancercancerinitiatingcellfeaturesanddiseasedisseminationthroughsox9andbcatenindevelopmentofnichebasedbiomarkers AT chenlitzong stromalgalectin1promotescolorectalcancercancerinitiatingcellfeaturesanddiseasedisseminationthroughsox9andbcatenindevelopmentofnichebasedbiomarkers AT yenblinju stromalgalectin1promotescolorectalcancercancerinitiatingcellfeaturesanddiseasedisseminationthroughsox9andbcatenindevelopmentofnichebasedbiomarkers |